17 resultados para errors-in-variables model
Resumo:
Idiopathic pulmonary fibrosis (IPF) is a chronic progressive disease with no curative pharmacological treatment. Animal models play an essential role in revealing molecular mechanisms involved in the pathogenesis of the disease. Bleomycin (BLM)-induced lung fibrosis is the most widely used and characterized model for anti-fibrotic drugs screening. However, several issues have been reported, such as the identification of an optimal BLM dose and administration scheme as well as gender-specificity. Moreover, the balance between disease resolution, an appropriate time window for therapeutic intervention and animal welfare remains critical aspects yet to be fully elucidated. In this thesis, Micro CT imaging has been used as a tool to identify the ideal BLM dose regimen to induce sustained lung fibrosis in mice as well as to assess the anti-fibrotic effect of Nintedanib (NINT) treatment upon this BLM administration regimen. In order to select the optimal BLM dose scheme, C57bl/6 male mice were treated with BLM via oropharyngeal aspiration (OA), following either double or triple BLM administration. The triple BLM administration resulted in the most promising scheme, able to balance disease resolution, appropriate time-window for therapeutic intervention and animal welfare. The fibrosis progression was longitudinally assessed by micro-CT every 7 days for 5 weeks after BLM administration and 5 animals were sacrificed at each timepoint for the BALF and histological evaluation. The antifibrotic effect of NINT was assessed following different treatment regimens in this model. Herein, we have developed an optimized mouse model of pulmonary fibrosis, enabling three weeks of the therapeutic window to screen putative anti-fibrotic drugs. micro-CT scanning, allowed us to monitor the progression of lung fibrosis and the therapeutical response longitudinally in the same subject, drastically reducing the number of animals involved in the experiment.
Resumo:
Primary myelofibrosis is a clonal hematopoietic disorder characterized by marked degrees of systemic inflammation. The release of pro-inflammatory factors by clonal hematopoietic cell populations cause the remodeling of a specialized microenvironment, defined niche, in which the hematopoietic stem cells reside. The main source of pro-inflammatory cytokines is represented by malignant megakaryocytes. The bone marrow and spleen from myelofibrosis patients, as well as those from the Gata1low mouse model of the disease, contain increased number of abnormal megakaryocytes. These cells express on their surface high levels of the adhesion receptor P-selectin that, by triggering a pathological megakaryocyte-neutrophil emperipolesis, lead to increased bioavailability of TGF-β1 in the microenvironment and disease progression. Gata1low mice develop with age a phenotype similar to that of patients with myelofibrosis. We previously demonstrated that deletion of the P-selectin gene in Gata1low mice prevented the development of the myelofibrotic phenotype in these mice. In the current study, we tested the hypothesis that pharmacological inhibition of P-selectin may rescue the fibrotic phenotype of Gata1low mice. To test this hypothesis, we have investigated the phenotype expressed by old Gata1low mice treated with the anti-mouse monoclonal antibody against P-selectin RB40.34, alone or in combination with the JAK2 inhibitor Ruxolitinib. The results showed that the combined therapy normalized the phenotype of Gata1low mice with limited toxicity by reducing fibrosis, TGF-β1 and CXCL1 content in the BM and spleen and by restoring hematopoiesis in the bone marrow and the normal architecture of the spleen. In conclusion, pharmacological inhibition of P-selectin was effective in targeting malignant megakaryocytes and the microenvironmental abnormalities that affect the hematopoietic stem cell compartment in this model. These results suggest that P-selectin and JAK1/2 inhibitors in combination may represent a valid therapeutic option for patients with myelofibrosis.