24 resultados para engineering graphics
Resumo:
Copper(I) halide clusters are recently considered as good candidate for optoelectronic devices such as OLEDs . Although the copper halide clusters, in particular copper iodide, are very well known since the beginning of the 20th century, only in the late ‘70s the interest on these compounds grew dramatically due their particular photophysical behaviour. These complexes are characterized by a dual triplet emission bands, named Cluster Centred (3CC) and Halogen-to-Ligand charge transfer (3XLCT), the intensities of which are strictly related with the temperature. The CC transition, due to the presence of a metallophylic interactions, is prevalent at ambient temperature while the XLCT transition, located preferentially on the ligand part, became more prominent at low temperature. Since these pioneering works, it was easy to understand the photophysical properties of this compounds became more interesting in solid-state respect to solution with an improvement in emission efficiency. In this work we aim to characterize in SS organocopper(I)iodide compounds to valuate the correlation between the molecular crystal structure and the photophysical properties. It is also considered to hike new strategies to synthesize CuI complexes from the wet reactions to the more green solvent free methods. The advantages in using these strategies are evident but, obtain a single crystal suitable for SCXRD analysis from these batches is quite impossible. The structure solution still remains the key point in this research so we tackle this problem solving the structure by X-ray powder diffraction data. When the sample was fully characterized we moved to design and development of the associated OLED-device. Since copper iodide complexes are often insoluble in organic solvents, the high vacuum deposition technique is preferred. A new non-conventional deposition process have also been proposed to avoid the low complex stability in this practice with an in-situ complex formation in a layer-by layer deposition route.
Resumo:
This PhD Thesis is focused on the development of fibrous polymeric scaffolds for tissue engineering applications and on the improvement of scaffold biomimetic properties. Scaffolds were fabricated by electrospinning, which allows to obtain scaffolds made of polymeric micro or nanofibers. Biomimetism was enhanced by following two approaches: (1) the use of natural biopolymers, and (2) the modification of the fibers surface chemistry. Gelatin was chosen for its bioactive properties and cellular affinity, however it lacks in mechanical properties. This problem was overcome by adding poly(lactic acid) to the scaffold through co-electrospinning and mechanical properties of the composite constructs were assessed. Gelatin effectively improves cell growth and viability and worth noting, composite scaffolds of gelatin and poly(lactic acid) were more effective than a plain gelatin scaffold. Scaffolds made of pure collagen fibers were fabricated. Modification of collagen triple helix structure in electrospun collagen fibers was studied. Mechanical properties were evaluated before and after crosslinking. The crosslinking procedure was developed and optimized by using - for the first time on electrospun collagen fibers - the crosslinking reactant 1,4-butanediol diglycidyl ether, with good results in terms of fibers stabilization. Cell culture experiments showed good results in term of cell adhesion and morphology. The fiber surface chemistry of electrospun poly(lactic acid) scaffold was modified by plasma treatment. Plasma did not affect thermal and mechanical properties of the scaffold, while it greatly increased its hydrophilicity by the introduction of carboxyl groups at the fiber surface. This fiber functionalization enhanced the fibroblast cell viability and spreading. Surface modifications by chemical reactions were conducted on electrospun scaffolds made of a polysophorolipid. The aim was to introduce a biomolecule at the fiber surface. By developing a series of chemical reactions, one oligopeptide every three repeating units of polysophorolipid was grafted at the surface of electrospun fibers.
Resumo:
The temporospatial controlled delivery of growth factors is crucial to trigger the desired healing mechanisms in target tissues. The uncontrolled release of growth factors has been demonstrated to cause severe side effects in its surrounding tissues. Thus, the first working hypothesis was to tune and optimize a newly developed multiscale delivery platform based on a nanostructured silicon particle core (pSi) and a poly (dl-lactide-co-glycolide) acid (PLGA) outer shell. In a murine subcutaneous model, the platform was demonstrated to be fully tunable for the temporal and spatial control release of the payload. Secondly, a multiscale approach was followed in a multicompartment collagen scaffold, to selectively integrate different sets of PLGA-pSi loaded with different reporter proteins. The spatial confinement of the microspheres allowed the release of the reporter proteins in each of the layers of the scaffold. Finally, the staged and zero-order release kinetics enabled the temporal biochemical patterning of the scaffold. The last step of this PhD project was to test if by fully embedding PLGA microspheres in a highly structured and fibrous collagen-based scaffold (camouflaging), it was possible to prevent their early detection and clearance by macrophages. It was further studied whether such a camouflaging strategy was efficient in reducing the production of key inflammatory molecules, while preserving the release kinetics of the payload of the PLGA microspheres. Results demonstrated that the camouflaging allowed for a 10-fold decrease in the number of PLGA microspheres internalized by macrophages, suggesting that the 3D scaffold operated by cloaking the PLGA microspheres. When the production of key inflammatory cytokines induced by the scaffold was assessed, macrophages' response to the PLGA microspheres-integrated scaffolds resulted in a response similar to that observed in the control (not functionalized scaffold) and the release kinetic of a reporter protein was preserved.
Resumo:
With the aim to provide people with sustainable options, engineers are ethically required to hold the safety, health and welfare of the public paramount and to satisfy society's need for sustainable development. The global crisis and related sustainability challenges are calling for a fundamental change in culture, structures and practices. Sustainability Transitions (ST) have been recognized as promising frameworks for radical system innovation towards sustainability. In order to enhance the effectiveness of transformative processes, both the adoption of a transdisciplinary approach and the experimentation of practices are crucial. The evolution of approaches towards ST provides a series of inspiring cases which allow to identify advances in making sustainability transitions happen. In this framework, the thesis has emphasized the role of Transition Engineering (TE). TE adopts a transdisciplinary approach for engineering to face the sustainability challenges and address the risks of un-sustainability. With this purpose, a definition of Transition Technologies is provided as a valid instruments to contribute to ST. In the empirical section, several transition initiatives have been analysed especially at the urban level. As a consequence, the model of living-lab of sustainability has crucially emerged. Living-labs are environments in which innovative technologies and services are co-created with users active participation. In this framework, university can play a key role as learning organization. The core of the thesis has concerned the experimental application of transition approach within the School of Engineering and Architecture of University of Bologna at Terracini Campus. The final vision is to realize a living-lab of sustainability. Particularly, a Transition Team has been established and several transition experiments have been conducted. The final result is not only the improvement of sustainability and resilience of the Terracini Campus, but the demonstration that university can generate solutions and strategies that tackle the complex, dynamic factors fuelling the global crisis.
Resumo:
Falls are common and burdensome accidents among the elderly. About one third of the population aged 65 years or more experience at least one fall each year. Fall risk assessment is believed to be beneficial for fall prevention. This thesis is about prognostic tools for falls for community-dwelling older adults. We provide an overview of the state of the art. We then take different approaches: we propose a theoretical probabilistic model to investigate some properties of prognostic tools for falls; we present a tool whose parameters were derived from data of the literature; we train and test a data-driven prognostic tool. Finally, we present some preliminary results on prediction of falls through features extracted from wearable inertial sensors. Heterogeneity in validation results are expected from theoretical considerations and are observed from empirical data. Differences in studies design hinder comparability and collaborative research. According to the multifactorial etiology of falls, assessment on multiple risk factors is needed in order to achieve good predictive accuracy.
Resumo:
The functionalization of substrates through the application of nanostructured coatings allows to create new materials, with enhanced properties. In this work, the development of self-cleaning and antibacterial textiles, through the application of TiO2 and Ag based nanostructured coatings was carried out. The production of TiO2 and Ag functionalized materials was achieved both by the classical dip-padding-curing method and by the innovative electrospinning process to obtain nanofibers doped with nano-TiO2 and nano-Ag. In order to optimize the production of functionalized textiles, the study focused on the comprehension of mechanisms involved in the photocatalytic and antibacterial processes and on the real applicability of the products. In particular, a deep investigation on the relationship between nanosol physicochemical characteristics, nanocoating properties and their performances was accomplished. Self-cleaning textiles with optimized properties were obtained by properly purifying and applying commercial TiO2 nanosol while the studies on the photocatalytic mechanism operating in self-cleaning application demonstrated the strong influence of hydrophilic properties and of interaction surface/radicals on final performance. Moreover, a study about the safety in handling of nano-TiO2 was carried out and risk remediation strategies, based on “safety by design” approach, were developed. In particular, the coating of TiO2 nanoparticles by a SiO2 shell was demonstrated to be the best risk remediation strategy in term of biological response and preserving of photoreactivity. The obtained results were confirmed determining the reactive oxygen species production by a multiple approach. Antibacterial textiles for biotechnological applications were also studied and Ag-coated cotton materials, with significant anti-bacterial properties, were produced. Finally, composite nanofibers were obtained merging biopolymer processing and sol-gel techniques. Indeed, electrospun nanofibers embedded with TiO2 and Ag NPs, starting from aqueous keratin based formulation were produced and the photocatalytic and antibacterial properties were assessed. The results confirmed the capability of electrospun keratin nanofibers matrix to preserve nanoparticle properties.
Resumo:
This PhD thesis focused on nanomaterial (NM) engineering for occupational health and safety, in the frame of the EU project “Safe Nano Worker Exposure Scenarios (SANOWORK)”. Following a safety by design approach, surface engineering (surface coating, purification process, colloidal force control, wet milling, film coating deposition and granulation) were proposed as risk remediation strategies (RRS) to decrease toxicity and emission potential of NMs within real processing lines. In the first case investigated, the PlasmaChem ZrO2 manufacturing, the colloidal force control applied to the washing of synthesis rector, allowed to reduce ZrO2 contamination in wastewater, performing an efficient recycling procedure of ZrO2 recovered. Furthermore, ZrO2 NM was investigated in the ceramic process owned by CNR-ISTEC and GEA-Niro; the spray drying and freeze drying techniques were employed decreasing NM emissivity, but maintaining a reactive surface in dried NM. Considering the handling operation of nanofibers (NFs) obtained through Elmarco electrospinning procedure, the film coating deposition was applied on polyamide non-woven to avoid free fiber release. For TiO2 NF the wet milling was applied to reduce and homogenize the aspect ratio, leading to a significant mitigation of fiber toxicity. In the Colorobbia spray coating line, Ag and TiO2 nanosols, employed to transfer respectively antibacterial or depolluting properties to different substrates, were investigated. Ag was subjected to surface coating and purification, decreasing NM toxicity. TiO2 was modified by surface coating, spray drying and blending with colloidal SiO2, improving its technological performance. In the extrusion of polymeric matrix charged with carbon nanotube (CNTs) owned by Leitat, the CNTs used as filler were granulated by spray drying and freeze spray drying techniques, allowing to reduce their exposure potential. Engineered NMs tested by biologists were further investigated in relevant biological conditions, to improve the knowledge of structure/toxicity mechanisms and obtain new insights for the design of safest NMs.
Resumo:
Self-organising pervasive ecosystems of devices are set to become a major vehicle for delivering infrastructure and end-user services. The inherent complexity of such systems poses new challenges to those who want to dominate it by applying the principles of engineering. The recent growth in number and distribution of devices with decent computational and communicational abilities, that suddenly accelerated with the massive diffusion of smartphones and tablets, is delivering a world with a much higher density of devices in space. Also, communication technologies seem to be focussing on short-range device-to-device (P2P) interactions, with technologies such as Bluetooth and Near-Field Communication gaining greater adoption. Locality and situatedness become key to providing the best possible experience to users, and the classic model of a centralised, enormously powerful server gathering and processing data becomes less and less efficient with device density. Accomplishing complex global tasks without a centralised controller responsible of aggregating data, however, is a challenging task. In particular, there is a local-to-global issue that makes the application of engineering principles challenging at least: designing device-local programs that, through interaction, guarantee a certain global service level. In this thesis, we first analyse the state of the art in coordination systems, then motivate the work by describing the main issues of pre-existing tools and practices and identifying the improvements that would benefit the design of such complex software ecosystems. The contribution can be divided in three main branches. First, we introduce a novel simulation toolchain for pervasive ecosystems, designed for allowing good expressiveness still retaining high performance. Second, we leverage existing coordination models and patterns in order to create new spatial structures. Third, we introduce a novel language, based on the existing ``Field Calculus'' and integrated with the aforementioned toolchain, designed to be usable for practical aggregate programming.
Resumo:
This thesis aims at investigating a new approach to document analysis based on the idea of structural patterns in XML vocabularies. My work is founded on the belief that authors do naturally converge to a reasonable use of markup languages and that extreme, yet valid instances are rare and limited. Actual documents, therefore, may be used to derive classes of elements (patterns) persisting across documents and distilling the conceptualization of the documents and their components, and may give ground for automatic tools and services that rely on no background information (such as schemas) at all. The central part of my work consists in introducing from the ground up a formal theory of eight structural patterns (with three sub-patterns) that are able to express the logical organization of any XML document, and verifying their identifiability in a number of different vocabularies. This model is characterized by and validated against three main dimensions: terseness (i.e. the ability to represent the structure of a document with a small number of objects and composition rules), coverage (i.e. the ability to capture any possible situation in any document) and expressiveness (i.e. the ability to make explicit the semantics of structures, relations and dependencies). An algorithm for the automatic recognition of structural patterns is then presented, together with an evaluation of the results of a test performed on a set of more than 1100 documents from eight very different vocabularies. This language-independent analysis confirms the ability of patterns to capture and summarize the guidelines used by the authors in their everyday practice. Finally, I present some systems that work directly on the pattern-based representation of documents. The ability of these tools to cover very different situations and contexts confirms the effectiveness of the model.