18 resultados para cylinder
Resumo:
This work deals with the development of calibration procedures and control systems to improve the performance and efficiency of modern spark ignition turbocharged engines. The algorithms developed are used to optimize and manage the spark advance and the air-to-fuel ratio to control the knock and the exhaust gas temperature at the turbine inlet. The described work falls within the activity that the research group started in the previous years with the industrial partner Ferrari S.p.a. . The first chapter deals with the development of a control-oriented engine simulator based on a neural network approach, with which the main combustion indexes can be simulated. The second chapter deals with the development of a procedure to calibrate offline the spark advance and the air-to-fuel ratio to run the engine under knock-limited conditions and with the maximum admissible exhaust gas temperature at the turbine inlet. This procedure is then converted into a model-based control system and validated with a Software in the Loop approach using the engine simulator developed in the first chapter. Finally, it is implemented in a rapid control prototyping hardware to manage the combustion in steady-state and transient operating conditions at the test bench. The third chapter deals with the study of an innovative and cheap sensor for the in-cylinder pressure measurement, which is a piezoelectric washer that can be installed between the spark plug and the engine head. The signal generated by this kind of sensor is studied, developing a specific algorithm to adjust the value of the knock index in real-time. Finally, with the engine simulator developed in the first chapter, it is demonstrated that the innovative sensor can be coupled with the control system described in the second chapter and that the performance obtained could be the same reachable with the standard in-cylinder pressure sensors.
Resumo:
The current environmental crisis is forcing the automotive industry to face tough challenges for the Internal Combustion Engines development in order to reduce the emissions of pollutants and Greenhouse gases. In this context, in the last decades, the main technological solutions adopted by the manufacturers have been the direct injection and the engine downsizing, which led to the rising of new concerns related to the fuel-cylinder walls physical interaction. The fuel spray possibly impacts the cylinder liner wall, which is wetted by the lubricant oil thus causing the derating of the lubricant properties, increasing the oil consumption, and contaminating the lubricant oil in the crankcase. Also, concerning hydrogen fuelled internal combustion engines, it is likely that the high near-wall temperature, which is typical of the hydrogen flame, results in the evaporation of a portion of the lubricant oil, increasing its consumption. With regards on the innovative combustion systems and their control strategies, optical accessible engines are fundamental tools for experimental investigations on such combustion systems. Though, due to the optical measurement line, optical engines suffer from a high level of blow-by, which must be accounted for. In light of the above, this thesis work aims to develop numerical methodologies with the aim to build useful tools for supporting the design of modern engines. In particular, a one-dimensional modelling of the lubricant oil-fuel dilution and oil evaporation has been performed and coupled with an optimization algorithm to achieve a lubricant oil surrogate. Then, a quasi-dimensional blow-by model has been developed and validated against experimental data. Such model, has been coupled with CFD 3D simulations and directly implemented in CFD 3D. Finally, CFD 3D simulations coupled with the VOF method have been performed in order to validate a methodology for studying the impact of a liquid droplet on a solid surface.
Resumo:
In pursuit of aligning with the European Union's ambitious target of achieving a carbon-neutral economy by 2050, researchers, vehicle manufacturers, and original equipment manufacturers have been at the forefront of exploring cutting-edge technologies for internal combustion engines. The introduction of these technologies has significantly increased the effort required to calibrate the models implemented in the engine control units. Consequently the development of tools that reduce costs and the time required during the experimental phases, has become imperative. Additionally, to comply with ever-stricter limits on 〖"CO" 〗_"2" emissions, it is crucial to develop advanced control systems that enhance traditional engine management systems in order to reduce fuel consumption. Furthermore, the introduction of new homologation cycles, such as the real driving emissions cycle, compels manufacturers to bridge the gap between engine operation in laboratory tests and real-world conditions. Within this context, this thesis showcases the performance and cost benefits achievable through the implementation of an auto-adaptive closed-loop control system, leveraging in-cylinder pressure sensors in a heavy-duty diesel engine designed for mining applications. Additionally, the thesis explores the promising prospect of real-time self-adaptive machine learning models, particularly neural networks, to develop an automatic system, using in-cylinder pressure sensors for the precise calibration of the target combustion phase and optimal spark advance in a spark-ignition engines. To facilitate the application of these combustion process feedback-based algorithms in production applications, the thesis discusses the results obtained from the development of a cost-effective sensor for indirect cylinder pressure measurement. Finally, to ensure the quality control of the proposed affordable sensor, the thesis provides a comprehensive account of the design and validation process for a piezoelectric washer test system.