50 resultados para computation- and data-intensive applications
Resumo:
Hadrontherapy employs high-energy beams of charged particles (protons and heavier ions) to treat deep-seated tumours: these particles have a favourable depth-dose distribution in tissue characterized by a low dose in the entrance channel and a sharp maximum (Bragg peak) near the end of their path. In these treatments nuclear interactions have to be considered: beam particles can fragment in the human body releasing a non-zero dose beyond the Bragg peak while fragments of human body nuclei can modify the dose released in healthy tissues. These effects are still in question given the lack of interesting cross sections data. Also space radioprotection can profit by fragmentation cross section measurements: the interest in long-term manned space missions beyond Low Earth Orbit is growing in these years but it has to cope with major health risks due to space radiation. To this end, risk models are under study: however, huge gaps in fragmentation cross sections data are currently present preventing an accurate benchmark of deterministic and Monte Carlo codes. To fill these gaps in data, the FOOT (FragmentatiOn Of Target) experiment was proposed. It is composed by two independent and complementary setups, an Emulsion Cloud Chamber and an electronic setup composed by several subdetectors providing redundant measurements of kinematic properties of fragments produced in nuclear interactions between a beam and a target. FOOT aims to measure double differential cross sections both in angle and kinetic energy which is the most complete information to address existing questions. In this Ph.D. thesis, the development of the Trigger and Data Acquisition system for the FOOT electronic setup and a first analysis of 400 MeV/u 16O beam on Carbon target data acquired in July 2021 at GSI (Darmstadt, Germany) are presented. When possible, a comparison with other available measurements is also reported.
Resumo:
Biomarkers are biological indicators of human health conditions. Their ultra-sensitive quantification is of paramount importance in clinical monitoring and early disease diagnosis. Biosensors are simple and easy-to-use analytical devices and, in their world, electrochemiluminescence (ECL) is one of the most promising analytical techniques that needs an ever-increasing sensitivity for improving its clinical effectiveness. Scope of this project was the investigation of the ECL generation mechanisms for enhancing the ECL intensity also through the identification of suitable nanostructures. The combination of nanotechnologies, microscopy and ECL has proved to be a very successful strategy to improve the analytical efficiency of ECL in one of its most promising bioanalytical approaches, the bead-based immunoassay. Nanosystems, such as [Ru(bpy)3]2+-dye-doped nanoparticles (DDSNPs) and Bodipy Carbon Nanodots, have been used to improve the sensitivity of ECL techniques thanks to their advantageous and tuneable properties, reaching a signal increase of 750% in DDSNPs-bead-based immunoassay system. In this thesis, an investigation of size and distance effects on the ECL mechanisms was carried out through the innovative combination of ECL microscopy and electrochemical mapping of radicals. It allowed the discovery of an unexpected and highly efficient mechanistic path for ECL generation at small distances from the electrode surface. It was exploited and enhanced through the addition of a branched amine DPIBA to the usual coreactant TPrA solution for enhancing the ECL efficiency until a maximum of 128%. Finally, a beads-based immunoassay and an immunosensor specific for cardiac Troponin I were built exploiting previous results and carbon nanotubes features. They created a conductive layer around beads enhancing the signal by 70% and activating an ECL mechanism unobserved before in such systems. In conclusion, the combination of ECL microscopy and nanotechnology and the deep understanding of the mechanisms responsible for the ECL emission led to a great enhancement in the signal.
Resumo:
Effective field theories (EFTs) are ubiquitous in theoretical physics and in particular in field theory descriptions of quantum systems probed at energies much lower than one or few characterizing scales. More recently, EFTs have gained a prominent role in the study of fundamental interactions and in particular in the parametriasation of new physics beyond the Standard Model, which would occur at scales Λ, much larger than the electroweak scale. In this thesis, EFTs are employed to study three different physics cases. First, we consider light-by-light scattering as a possible probe of new physics. At low energies it can be described by dimension-8 operators, leading to the well-known Euler-Heisenberg Lagrangian. We consider the explicit dependence of matching coefficients on type of particle running in the loop, confirming the sensitiveness to the spin, mass, and interactions of possibly new particles. Second, we consider EFTs to describe Dark Matter (DM) interactions with SM particles. We consider a phenomenologically motivated case, i.e., a new fermion state that couples to the Hypercharge through a form factor and has no interactions with photons and the Z boson. Results from direct, indirect and collider searches for DM are used to constrain the parameter space of the model. Third, we consider EFTs that describe axion-like particles (ALPs), whose phenomenology is inspired by the Peccei-Quinn solution to strong CP problem. ALPs generically couple to ordinary matter through dimension-5 operators. In our case study, we investigate the rather unique phenomenological implications of ALPs with enhanced couplings to the top quark.
Resumo:
Bone disorders have severe impact on body functions and quality life, and no satisfying therapies exist yet. The current models for bone disease study are scarcely predictive and the options existing for therapy fail for complex systems. To mimic and/or restore bone, 3D printing/bioprinting allows the creation of 3D structures with different materials compositions, properties, and designs. In this study, 3D printing/bioprinting has been explored for (i) 3D in vitro tumor models and (ii) regenerative medicine. Tumor models have been developed by investigating different bioinks (i.e., alginate, modified gelatin) enriched by hydroxyapatite nanoparticles to increase printing fidelity and increase biomimicry level, thus mimicking the organic and inorganic phase of bone. High Saos-2 cell viability was obtained, and the promotion of spheroids clusters as occurring in vivo was observed. To develop new syntethic bone grafts, two approaches have been explored. In the first, novel magnesium-phosphate scaffolds have been investigated by extrusion-based 3D printing for spinal fusion. 3D printing process and parameters have been optimized to obtain custom-shaped structures, with competent mechanical properties. The 3D printed structures have been combined to alginate porous structures created by a novel ice-templating technique, to be loaded by antibiotic drug to address infection prevention. Promising results in terms of planktonic growth inhibition was obtained. In the second strategy, marine waste precursors have been considered for the conversion in biogenic HA by using a mild-wet conversion method with different parameters. The HA/carbonate ratio conversion efficacy was analysed for each precursor (by FTIR and SEM), and the best conditions were combined to alginate to develop a composite structure. The composite paste was successfully employed in custom-modified 3D printer for the obtainment of 3D printed stable scaffolds. In conclusion, the osteomimetic materials developed in this study for bone models and synthetic grafts are promising in bone field.
Resumo:
The thesis represents the conclusive outcome of the European Joint Doctorate programmein Law, Science & Technology funded by the European Commission with the instrument Marie Skłodowska-Curie Innovative Training Networks actions inside of the H2020, grantagreement n. 814177. The tension between data protection and privacy from one side, and the need of granting further uses of processed personal datails is investigated, drawing the lines of the technological development of the de-anonymization/re-identification risk with an explorative survey. After acknowledging its span, it is questioned whether a certain degree of anonymity can still be granted focusing on a double perspective: an objective and a subjective perspective. The objective perspective focuses on the data processing models per se, while the subjective perspective investigates whether the distribution of roles and responsibilities among stakeholders can ensure data anonymity.
Resumo:
The discovery of new materials and their functions has always been a fundamental component of technological progress. Nowadays, the quest for new materials is stronger than ever: sustainability, medicine, robotics and electronics are all key assets which depend on the ability to create specifically tailored materials. However, designing materials with desired properties is a difficult task, and the complexity of the discipline makes it difficult to identify general criteria. While scientists developed a set of best practices (often based on experience and expertise), this is still a trial-and-error process. This becomes even more complex when dealing with advanced functional materials. Their properties depend on structural and morphological features, which in turn depend on fabrication procedures and environment, and subtle alterations leads to dramatically different results. Because of this, materials modeling and design is one of the most prolific research fields. Many techniques and instruments are continuously developed to enable new possibilities, both in the experimental and computational realms. Scientists strive to enforce cutting-edge technologies in order to make progress. However, the field is strongly affected by unorganized file management, proliferation of custom data formats and storage procedures, both in experimental and computational research. Results are difficult to find, interpret and re-use, and a huge amount of time is spent interpreting and re-organizing data. This also strongly limit the application of data-driven and machine learning techniques. This work introduces possible solutions to the problems described above. Specifically, it talks about developing features for specific classes of advanced materials and use them to train machine learning models and accelerate computational predictions for molecular compounds; developing method for organizing non homogeneous materials data; automate the process of using devices simulations to train machine learning models; dealing with scattered experimental data and use them to discover new patterns.
Resumo:
Bioinformatics is a recent and emerging discipline which aims at studying biological problems through computational approaches. Most branches of bioinformatics such as Genomics, Proteomics and Molecular Dynamics are particularly computationally intensive, requiring huge amount of computational resources for running algorithms of everincreasing complexity over data of everincreasing size. In the search for computational power, the EGEE Grid platform, world's largest community of interconnected clusters load balanced as a whole, seems particularly promising and is considered the new hope for satisfying the everincreasing computational requirements of bioinformatics, as well as physics and other computational sciences. The EGEE platform, however, is rather new and not yet free of problems. In addition, specific requirements of bioinformatics need to be addressed in order to use this new platform effectively for bioinformatics tasks. In my three years' Ph.D. work I addressed numerous aspects of this Grid platform, with particular attention to those needed by the bioinformatics domain. I hence created three major frameworks, Vnas, GridDBManager and SETest, plus an additional smaller standalone solution, to enhance the support for bioinformatics applications in the Grid environment and to reduce the effort needed to create new applications, additionally addressing numerous existing Grid issues and performing a series of optimizations. The Vnas framework is an advanced system for the submission and monitoring of Grid jobs that provides an abstraction with reliability over the Grid platform. In addition, Vnas greatly simplifies the development of new Grid applications by providing a callback system to simplify the creation of arbitrarily complex multistage computational pipelines and provides an abstracted virtual sandbox which bypasses Grid limitations. Vnas also reduces the usage of Grid bandwidth and storage resources by transparently detecting equality of virtual sandbox files based on content, across different submissions, even when performed by different users. BGBlast, evolution of the earlier project GridBlast, now provides a Grid Database Manager (GridDBManager) component for managing and automatically updating biological flatfile databases in the Grid environment. GridDBManager sports very novel features such as an adaptive replication algorithm that constantly optimizes the number of replicas of the managed databases in the Grid environment, balancing between response times (performances) and storage costs according to a programmed cost formula. GridDBManager also provides a very optimized automated management for older versions of the databases based on reverse delta files, which reduces the storage costs required to keep such older versions available in the Grid environment by two orders of magnitude. The SETest framework provides a way to the user to test and regressiontest Python applications completely scattered with side effects (this is a common case with Grid computational pipelines), which could not easily be tested using the more standard methods of unit testing or test cases. The technique is based on a new concept of datasets containing invocations and results of filtered calls. The framework hence significantly accelerates the development of new applications and computational pipelines for the Grid environment, and the efforts required for maintenance. An analysis of the impact of these solutions will be provided in this thesis. This Ph.D. work originated various publications in journals and conference proceedings as reported in the Appendix. Also, I orally presented my work at numerous international conferences related to Grid and bioinformatics.
Resumo:
In recent years, the use of Reverse Engineering systems has got a considerable interest for a wide number of applications. Therefore, many research activities are focused on accuracy and precision of the acquired data and post processing phase improvements. In this context, this PhD Thesis deals with the definition of two novel methods for data post processing and data fusion between physical and geometrical information. In particular a technique has been defined for error definition in 3D points’ coordinates acquired by an optical triangulation laser scanner, with the aim to identify adequate correction arrays to apply under different acquisition parameters and operative conditions. Systematic error in data acquired is thus compensated, in order to increase accuracy value. Moreover, the definition of a 3D thermogram is examined. Object geometrical information and its thermal properties, coming from a thermographic inspection, are combined in order to have a temperature value for each recognizable point. Data acquired by an optical triangulation laser scanner are also used to normalize temperature values and make thermal data independent from thermal-camera point of view.
Resumo:
Big data are reshaping the way we interact with technology, thus fostering new applications to increase the safety-assessment of foods. An extraordinary amount of information is analysed using machine learning approaches aimed at detecting the existence or predicting the likelihood of future risks. Food business operators have to share the results of these analyses when applying to place on the market regulated products, whereas agri-food safety agencies (including the European Food Safety Authority) are exploring new avenues to increase the accuracy of their evaluations by processing Big data. Such an informational endowment brings with it opportunities and risks correlated to the extraction of meaningful inferences from data. However, conflicting interests and tensions among the involved entities - the industry, food safety agencies, and consumers - hinder the finding of shared methods to steer the processing of Big data in a sound, transparent and trustworthy way. A recent reform in the EU sectoral legislation, the lack of trust and the presence of a considerable number of stakeholders highlight the need of ethical contributions aimed at steering the development and the deployment of Big data applications. Moreover, Artificial Intelligence guidelines and charters published by European Union institutions and Member States have to be discussed in light of applied contexts, including the one at stake. This thesis aims to contribute to these goals by discussing what principles should be put forward when processing Big data in the context of agri-food safety-risk assessment. The research focuses on two interviewed topics - data ownership and data governance - by evaluating how the regulatory framework addresses the challenges raised by Big data analysis in these domains. The outcome of the project is a tentative Roadmap aimed to identify the principles to be observed when processing Big data in this domain and their possible implementations.
Resumo:
In this thesis we discuss in what ways computational logic (CL) and data science (DS) can jointly contribute to the management of knowledge within the scope of modern and future artificial intelligence (AI), and how technically-sound software technologies can be realised along the path. An agent-oriented mindset permeates the whole discussion, by stressing pivotal role of autonomous agents in exploiting both means to reach higher degrees of intelligence. Accordingly, the goals of this thesis are manifold. First, we elicit the analogies and differences among CL and DS, hence looking for possible synergies and complementarities along 4 major knowledge-related dimensions, namely representation, acquisition (a.k.a. learning), inference (a.k.a. reasoning), and explanation. In this regard, we propose a conceptual framework through which bridges these disciplines can be described and designed. We then survey the current state of the art of AI technologies, w.r.t. their capability to support bridging CL and DS in practice. After detecting lacks and opportunities, we propose the notion of logic ecosystem as the new conceptual, architectural, and technological solution supporting the incremental integration of symbolic and sub-symbolic AI. Finally, we discuss how our notion of logic ecosys- tem can be reified into actual software technology and extended towards many DS-related directions.
Resumo:
In fluid dynamics research, pressure measurements are of great importance to define the flow field acting on aerodynamic surfaces. In fact the experimental approach is fundamental to avoid the complexity of the mathematical models for predicting the fluid phenomena. It’s important to note that, using in-situ sensor to monitor pressure on large domains with highly unsteady flows, several problems are encountered working with the classical techniques due to the transducer cost, the intrusiveness, the time response and the operating range. An interesting approach for satisfying the previously reported sensor requirements is to implement a sensor network capable of acquiring pressure data on aerodynamic surface using a wireless communication system able to collect the pressure data with the lowest environmental–invasion level possible. In this thesis a wireless sensor network for fluid fields pressure has been designed, built and tested. To develop the system, a capacitive pressure sensor, based on polymeric membrane, and read out circuitry, based on microcontroller, have been designed, built and tested. The wireless communication has been performed using the Zensys Z-WAVE platform, and network and data management have been implemented. Finally, the full embedded system with antenna has been created. As a proof of concept, the monitoring of pressure on the top of the mainsail in a sailboat has been chosen as working example.
Resumo:
Due to the growing attention of consumers towards their food, improvement of quality of animal products has become one of the main focus of research. To this aim, the application of modern molecular genetics approaches has been proved extremely useful and effective. This innovative drive includes all livestock species productions, including pork. The Italian pig breeding industry is unique because needs heavy pigs slaughtered at about 160 kg for the production of high quality processed products. For this reason, it requires precise meat quality and carcass characteristics. Two aspects have been considered in this thesis: the application of the transcriptome analysis in post mortem pig muscles as a possible method to evaluate meat quality parameters related to the pre mortem status of the animals, including health, nutrition, welfare, and with potential applications for product traceability (chapters 3 and 4); the study of candidate genes for obesity related traits in order to identify markers associated with fatness in pigs that could be applied to improve carcass quality (chapters 5, 6, and 7). Chapter three addresses the first issue from a methodological point of view. When we considered this issue, it was not obvious that post mortem skeletal muscle could be useful for transcriptomic analysis. Therefore we demonstrated that the quality of RNA extracted from skeletal muscle of pigs sampled at different post mortem intervals (20 minutes, 2 hours, 6 hours, and 24 hours) is good for downstream applications. Degradation occurred starting from 48 h post mortem even if at this time it is still possible to use some RNA products. In the fourth chapter, in order to demonstrate the potential use of RNA obtained up to 24 hours post mortem, we present the results of RNA analysis with the Affymetrix microarray platform that made it possible to assess the level of expression of more of 24000 mRNAs. We did not identify any significant differences between the different post mortem times suggesting that this technique could be applied to retrieve information coming from the transcriptome of skeletal muscle samples not collected just after slaughtering. This study represents the first contribution of this kind applied to pork. In the fifth chapter, we investigated as candidate for fat deposition the TBC1D1 [TBC1 (tre-2/USP6, BUB2, cdc16) gene. This gene is involved in mechanisms regulating energy homeostasis in skeletal muscle and is associated with predisposition to obesity in humans. By resequencing a fragment of the TBC1D1 gene we identified three synonymous mutations localized in exon 2 (g.40A>G, g.151C>T, and g.172T>C) and 2 polymorphisms localized in intron 2 (g.219G>A and g.252G>A). One of these polymorphisms (g.219G>A) was genotyped by high resolution melting (HRM) analysis and PCR-RFLP. Moreover, this gene sequence was mapped by radiation hybrid analysis on porcine chromosome 8. The association study was conducted in 756 performance tested pigs of Italian Large White and Italian Duroc breeds. Significant results were obtained for lean meat content, back fat thickness, visible intermuscular fat and ham weight. In chapter six, a second candidate gene (tribbles homolog 3, TRIB3) is analyzed in a study of association with carcass and meat quality traits. The TRIB3 gene is involved in energy metabolism of skeletal muscle and plays a role as suppressor of adipocyte differentiation. We identified two polymorphisms in the first coding exon of the porcine TRIB3 gene, one is a synonymous SNP (c.132T> C), a second is a missense mutation (c.146C> T, p.P49L). The two polymorphisms appear to be in complete linkage disequilibrium between and within breeds. The in silico analysis of the p.P49L substitution suggests that it might have a functional effect. The association study in about 650 pigs indicates that this marker is associated with back fat thickness in Italian Large White and Italian Duroc breeds in two different experimental designs. This polymorphisms is also associated with lactate content of muscle semimembranosus in Italian Large White pigs. Expression analysis indicated that this gene is transcribed in skeletal muscle and adipose tissue as well as in other tissues. In the seventh chapter, we reported the genotyping results for of 677 SNPs in extreme divergent groups of pigs chosen according to the extreme estimated breeding values for back fat thickness. SNPs were identified by resequencing, literature mining and in silico database mining. analysis, data reported in the literature of 60 candidates genes for obesity. Genotyping was carried out using the GoldenGate (Illumina) platform. Of the analyzed SNPs more that 300 were polymorphic in the genotyped population and had minor allele frequency (MAF) >0.05. Of these SNPs, 65 were associated (P<0.10) with back fat thickness. One of the most significant gene marker was the same TBC1D1 SNPs reported in chapter 5, confirming the role of this gene in fat deposition in pig. These results could be important to better define the pig as a model for human obesity other than for marker assisted selection to improve carcass characteristics.
Resumo:
Two of the main features of today complex software systems like pervasive computing systems and Internet-based applications are distribution and openness. Distribution revolves around three orthogonal dimensions: (i) distribution of control|systems are characterised by several independent computational entities and devices, each representing an autonomous and proactive locus of control; (ii) spatial distribution|entities and devices are physically distributed and connected in a global (such as the Internet) or local network; and (iii) temporal distribution|interacting system components come and go over time, and are not required to be available for interaction at the same time. Openness deals with the heterogeneity and dynamism of system components: complex computational systems are open to the integration of diverse components, heterogeneous in terms of architecture and technology, and are dynamic since they allow components to be updated, added, or removed while the system is running. The engineering of open and distributed computational systems mandates for the adoption of a software infrastructure whose underlying model and technology could provide the required level of uncoupling among system components. This is the main motivation behind current research trends in the area of coordination middleware to exploit tuple-based coordination models in the engineering of complex software systems, since they intrinsically provide coordinated components with communication uncoupling and further details in the references therein. An additional daunting challenge for tuple-based models comes from knowledge-intensive application scenarios, namely, scenarios where most of the activities are based on knowledge in some form|and where knowledge becomes the prominent means by which systems get coordinated. Handling knowledge in tuple-based systems induces problems in terms of syntax - e.g., two tuples containing the same data may not match due to differences in the tuple structure - and (mostly) of semantics|e.g., two tuples representing the same information may not match based on a dierent syntax adopted. Till now, the problem has been faced by exploiting tuple-based coordination within a middleware for knowledge intensive environments: e.g., experiments with tuple-based coordination within a Semantic Web middleware (surveys analogous approaches). However, they appear to be designed to tackle the design of coordination for specic application contexts like Semantic Web and Semantic Web Services, and they result in a rather involved extension of the tuple space model. The main goal of this thesis was to conceive a more general approach to semantic coordination. In particular, it was developed the model and technology of semantic tuple centres. It is adopted the tuple centre model as main coordination abstraction to manage system interactions. A tuple centre can be seen as a programmable tuple space, i.e. an extension of a Linda tuple space, where the behaviour of the tuple space can be programmed so as to react to interaction events. By encapsulating coordination laws within coordination media, tuple centres promote coordination uncoupling among coordinated components. Then, the tuple centre model was semantically enriched: a main design choice in this work was to try not to completely redesign the existing syntactic tuple space model, but rather provide a smooth extension that { although supporting semantic reasoning { keep the simplicity of tuple and tuple matching as easier as possible. By encapsulating the semantic representation of the domain of discourse within coordination media, semantic tuple centres promote semantic uncoupling among coordinated components. The main contributions of the thesis are: (i) the design of the semantic tuple centre model; (ii) the implementation and evaluation of the model based on an existent coordination infrastructure; (iii) a view of the application scenarios in which semantic tuple centres seem to be suitable as coordination media.
Resumo:
We present a non linear technique to invert strong motion records with the aim of obtaining the final slip and rupture velocity distributions on the fault plane. In this thesis, the ground motion simulation is obtained evaluating the representation integral in the frequency. The Green’s tractions are computed using the discrete wave-number integration technique that provides the full wave-field in a 1D layered propagation medium. The representation integral is computed through a finite elements technique, based on a Delaunay’s triangulation on the fault plane. The rupture velocity is defined on a coarser regular grid and rupture times are computed by integration of the eikonal equation. For the inversion, the slip distribution is parameterized by 2D overlapping Gaussian functions, which can easily relate the spectrum of the possible solutions with the minimum resolvable wavelength, related to source-station distribution and data processing. The inverse problem is solved by a two-step procedure aimed at separating the computation of the rupture velocity from the evaluation of the slip distribution, the latter being a linear problem, when the rupture velocity is fixed. The non-linear step is solved by optimization of an L2 misfit function between synthetic and real seismograms, and solution is searched by the use of the Neighbourhood Algorithm. The conjugate gradient method is used to solve the linear step instead. The developed methodology has been applied to the M7.2, Iwate Nairiku Miyagi, Japan, earthquake. The estimated magnitude seismic moment is 2.6326 dyne∙cm that corresponds to a moment magnitude MW 6.9 while the mean the rupture velocity is 2.0 km/s. A large slip patch extends from the hypocenter to the southern shallow part of the fault plane. A second relatively large slip patch is found in the northern shallow part. Finally, we gave a quantitative estimation of errors associates with the parameters.
Resumo:
Graphene and graphenic derivatives have rapidly emerged as an extremely promising system for electronic, optical, thermal, and electromechanical applications. Several approaches have been developed to produce these materials (i.e. scotch tape, CVD, chemical and solvent exfoliation). In this work we report a chemical approach to produce graphene by reducing graphene oxide (GO) via thermal or electrical methods. A morphological and electrical characterization of these systems has been performed using different techniques such as SPM, SEM, TEM, Raman and XPS. Moreover, we studied the interaction between graphene derivates and organic molecules focusing on the following aspects: - improvement of optical contrast of graphene on different substrates for rapid monolayer identification1 - supramolecular interaction with organic molecules (i.e. thiophene, pyrene etc.)4 - covalent functionalization with optically active molecules2 - preparation and characterization of organic/graphene Field Effect Transistors3-5 Graphene chemistry can potentially allow seamless integration of graphene technology in organic electronics devices to improve device performance and develop new applications for graphene-based materials. [1] E. Treossi, M. Melucci, A. Liscio, M. Gazzano, P. Samorì, and V. Palermo, J. Am. Chem. Soc., 2009, 131, 15576. [2] M. Melucci, E. Treossi, L. Ortolani, G. Giambastiani, V. Morandi, P. Klar, C. Casiraghi, P. Samorì, and V. Palermo, J. Mater. Chem., 2010, 20, 9052. [3] J.M. Mativetsky, E. Treossi, E. Orgiu, M. Melucci, G.P. Veronese, P. Samorì, and V. Palermo, J. Am. Chem. Soc., 2010, 132, 14130. [4] A. Liscio, G.P. Veronese, E. Treossi, F. Suriano, F. Rossella, V. Bellani, R. Rizzoli, P. Samorì and V. Palermo, J. Mater. Chem., 2011, 21, 2924. [5] J.M. Mativetsky, A. Liscio, E. Treossi, E. Orgiu, A. Zanelli, P. Samorì , V. Palermo, J. Am. Chem. Soc., 2011, 133, 14320