17 resultados para cognitive task analysis


Relevância:

30.00% 30.00%

Publicador:

Resumo:

This dissertation studies the geometric static problem of under-constrained cable-driven parallel robots (CDPRs) supported by n cables, with n ≤ 6. The task consists of determining the overall robot configuration when a set of n variables is assigned. When variables relating to the platform posture are assigned, an inverse geometric static problem (IGP) must be solved; whereas, when cable lengths are given, a direct geometric static problem (DGP) must be considered. Both problems are challenging, as the robot continues to preserve some degrees of freedom even after n variables are assigned, with the final configuration determined by the applied forces. Hence, kinematics and statics are coupled and must be resolved simultaneously. In this dissertation, a general methodology is presented for modelling the aforementioned scenario with a set of algebraic equations. An elimination procedure is provided, aimed at solving the governing equations analytically and obtaining a least-degree univariate polynomial in the corresponding ideal for any value of n. Although an analytical procedure based on elimination is important from a mathematical point of view, providing an upper bound on the number of solutions in the complex field, it is not practical to compute these solutions as it would be very time-consuming. Thus, for the efficient computation of the solution set, a numerical procedure based on homotopy continuation is implemented. A continuation algorithm is also applied to find a set of robot parameters with the maximum number of real assembly modes for a given DGP. Finally, the end-effector pose depends on the applied load and may change due to external disturbances. An investigation into equilibrium stability is therefore performed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This thesis regards the study and the development of new cognitive assessment and rehabilitation techniques of subjects with traumatic brain injury (TBI). In particular, this thesis i) provides an overview about the state of art of this new assessment and rehabilitation technologies, ii) suggests new methods for the assessment and rehabilitation and iii) contributes to the explanation of the neurophysiological mechanism that is involved in a rehabilitation treatment. Some chapters provide useful information to contextualize TBI and its outcome; they describe the methods used for its assessment/rehabilitation. The other chapters illustrate a series of experimental studies conducted in healthy subjects and TBI patients that suggest new approaches to assessment and rehabilitation. The new proposed approaches have in common the use of electroencefalografy (EEG). EEG was used in all the experimental studies with a different purpose, such as diagnostic tool, signal to command a BCI-system, outcome measure to evaluate the effects of a treatment, etc. The main achieved results are about: i) the study and the development of a system for the communication with patients with disorders of consciousness. It was possible to identify a paradigm of reliable activation during two imagery task using EEG signal or EEG and NIRS signal; ii) the study of the effects of a neuromodulation technique (tDCS) on EEG pattern. This topic is of great importance and interest. The emerged founding showed that the tDCS can manipulate the cortical network activity and through the research of optimal stimulation parameters, it is possible move the working point of a neural network and bring it in a condition of maximum learning. In this way could be possible improved the performance of a BCI system or to improve the efficacy of a rehabilitation treatment, like neurofeedback.