18 resultados para classification and regression trees
Resumo:
The study defines a new farm classification and identifies the arable land management. These aspects and several indicators are taken into account to estimate the sustainability level of farms, for organic and conventional regimes. The data source is Italian Farm Account Data Network (RICA) for years 2007-2011, which samples structural and economical information. An environmental data has been added to the previous one to better describe the farm context. The new farm classification describes holding by general informations and farm structure. The general information are: adopted regime and farm location in terms of administrative region, slope and phyto-climatic zone. The farm structures describe the presence of main productive processes and land covers, which are recorded by FADN database. The farms, grouped by homogeneous farm structure or farm typology, are evaluated in terms of sustainability. The farm model MAD has been used to estimate a list of indicators. They describe especially environmental and economical areas of sustainability. Finally arable lands are taken into account to identify arable land managements and crop rotations. Each arable land has been classified by crop pattern. Then crop rotation management has been analysed by spatial and temporal approaches. The analysis reports a high variability inside regimes. The farm structure influences indicators level more than regimes, and it is not always possible to compare the two regimes. However some differences between organic and conventional agriculture have been found. Organic farm structures report different frequency and geographical location than conventional ones. Also different connections among arable lands and farm structures have been identified.
Resumo:
The fast development of Information Communication Technologies (ICT) offers new opportunities to realize future smart cities. To understand, manage and forecast the city's behavior, it is necessary the analysis of different kinds of data from the most varied dataset acquisition systems. The aim of this research activity in the framework of Data Science and Complex Systems Physics is to provide stakeholders with new knowledge tools to improve the sustainability of mobility demand in future cities. Under this perspective, the governance of mobility demand generated by large tourist flows is becoming a vital issue for the quality of life in Italian cities' historical centers, which will worsen in the next future due to the continuous globalization process. Another critical theme is sustainable mobility, which aims to reduce private transportation means in the cities and improve multimodal mobility. We analyze the statistical properties of urban mobility of Venice, Rimini, and Bologna by using different datasets provided by companies and local authorities. We develop algorithms and tools for cartography extraction, trips reconstruction, multimodality classification, and mobility simulation. We show the existence of characteristic mobility paths and statistical properties depending on transport means and user's kinds. Finally, we use our results to model and simulate the overall behavior of the cars moving in the Emilia Romagna Region and the pedestrians moving in Venice with software able to replicate in silico the demand for mobility and its dynamic.
Resumo:
The advent of omic data production has opened many new perspectives in the quest for modelling complexity in biophysical systems. With the capability of characterizing a complex organism through the patterns of its molecular states, observed at different levels through various omics, a new paradigm of investigation is arising. In this thesis, we investigate the links between perturbations of the human organism, described as the ensemble of crosstalk of its molecular states, and health. Machine learning plays a key role within this picture, both in omic data analysis and model building. We propose and discuss different frameworks developed by the author using machine learning for data reduction, integration, projection on latent features, pattern analysis, classification and clustering of omic data, with a focus on 1H NMR metabolomic spectral data. The aim is to link different levels of omic observations of molecular states, from nanoscale to macroscale, to study perturbations such as diseases and diet interpreted as changes in molecular patterns. The first part of this work focuses on the fingerprinting of diseases, linking cellular and systemic metabolomics with genomic to asses and predict the downstream of perturbations all the way down to the enzymatic network. The second part is a set of frameworks and models, developed with 1H NMR metabolomic at its core, to study the exposure of the human organism to diet and food intake in its full complexity, from epidemiological data analysis to molecular characterization of food structure.