19 resultados para animal models
Resumo:
Traditional cell culture models have limitations in extrapolating functional mechanisms that underlie strategies of microbial virulence. Indeed during the infection the pathogens adapt to different tissue-specific environmental factors. The development of in vitro models resembling human tissue physiology might allow the replacement of inaccurate or aberrant animal models. Three-dimensional (3D) cell culture systems are more reliable and more predictive models that can be used for the meaningful dissection of host–pathogen interactions. The lung and gut mucosae often represent the first site of exposure to pathogens and provide a physical barrier against their entry. Within this context, the tracheobronchial and small intestine tract were modelled by tissue engineering approach. The main work was focused on the development and the extensive characterization of a human organotypic airway model, based on a mechanically supported co-culture of normal primary cells. The regained morphological features, the retrieved environmental factors and the presence of specific epithelial subsets resembled the native tissue organization. In addition, the respiratory model enabled the modular insertion of interesting cell types, such as innate immune cells or multipotent stromal cells, showing a functional ability to release pertinent cytokines differentially. Furthermore this model responded imitating known events occurring during the infection by Non-typeable H. influenzae. Epithelial organoid models, mimicking the small intestine tract, were used for a different explorative analysis of tissue-toxicity. Further experiments led to detection of a cell population targeted by C. difficile Toxin A and suggested a role in the impairment of the epithelial homeostasis by the bacterial virulence machinery. The described cell-centered strategy can afford critical insights in the evaluation of the host defence and pathogenic mechanisms. The application of these two models may provide an informing step that more coherently defines relevant molecular interactions happening during the infection.
Resumo:
Il presente studio si concentra sull’analisi degli aspetti traslazionali nella ricerca farmacologica applicata alla Gastroenterologia. La trattazione si articola in due parti: una prima elaborazione teorica, che permette di inquadrare nel contesto della ricerca traslazionale il razionale scientifico ed etico alla base delle attività sperimentali eseguite durante il triennio; una seconda parte, nella quale si riportano i metodi, i risultati e le osservazioni conclusive derivanti dallo studio sperimentale. Nella prima parte vengono analizzate alcune caratteristiche delle procedure, adottate nella ricerca in ambito farmacologico gastrointestinale, che permettono di ottenere un dato verosimile derivabile da modelli diversi rispetto all’organismo umano. Sono inclusi nella trattazione gli aspetti etici dell’utilizzo di alcuni modelli animali di patologie intestinali organiche e funzionali in relazione al loro grado di predittività rispetto alla realtà sperimentale clinica. Nella seconda parte della trattazione, viene presentato uno studio esplorativo tissutale multicentrico sul ruolo del sistema oppioide e cannabinoide nella sindrome dell’intestino irritabile (IBS). Obiettivo dello studio è la valutazione dell’espressione e la localizzazione del recettore oppioide µ (µOR), del suo ligando β endorfina (β-END) e del recettore cannabinoide 2 (CB2) nei pazienti con IBS ad alvo costipato (IBS-C) e diarroico (IBS-D), ed in soggetti sani (HC). I dati ottenuti indicano un’implicazione del sistema oppioide e cannabinoide nella risposta immune alterata riscontrata nei pazienti con IBS ed in particolare nel sottogruppo IBS-C. La presente trattazione suggerisce come la creazione di nuovi sistemi di indagine sempre più validi da un punto di vista traslazionale possa dipendere, almeno in parte, dalla capacità di integrare realtà disciplinari, tecnologie ed esperienze metodologiche diverse nel contesto della ricerca in campo biomedico e farmacologico ed in particolare tramite un mutuo scambio di informazioni tra realtà clinica e ricerca di base
Resumo:
The research field of my PhD concerns mathematical modeling and numerical simulation, applied to the cardiac electrophysiology analysis at a single cell level. This is possible thanks to the development of mathematical descriptions of single cellular components, ionic channels, pumps, exchangers and subcellular compartments. Due to the difficulties of vivo experiments on human cells, most of the measurements are acquired in vitro using animal models (e.g. guinea pig, dog, rabbit). Moreover, to study the cardiac action potential and all its features, it is necessary to acquire more specific knowledge about single ionic currents that contribute to the cardiac activity. Electrophysiological models of the heart have become very accurate in recent years giving rise to extremely complicated systems of differential equations. Although describing the behavior of cardiac cells quite well, the models are computationally demanding for numerical simulations and are very difficult to analyze from a mathematical (dynamical-systems) viewpoint. Simplified mathematical models that capture the underlying dynamics to a certain extent are therefore frequently used. The results presented in this thesis have confirmed that a close integration of computational modeling and experimental recordings in real myocytes, as performed by dynamic clamp, is a useful tool in enhancing our understanding of various components of normal cardiac electrophysiology, but also arrhythmogenic mechanisms in a pathological condition, especially when fully integrated with experimental data.
Resumo:
Heart diseases are the leading cause of death worldwide, both for men and women. However, the ionic mechanisms underlying many cardiac arrhythmias and genetic disorders are not completely understood, thus leading to a limited efficacy of the current available therapies and leaving many open questions for cardiac electrophysiologists. On the other hand, experimental data availability is still a great issue in this field: most of the experiments are performed in vitro and/or using animal models (e.g. rabbit, dog and mouse), even when the final aim is to better understand the electrical behaviour of in vivo human heart either in physiological or pathological conditions. Computational modelling constitutes a primary tool in cardiac electrophysiology: in silico simulations, based on the available experimental data, may help to understand the electrical properties of the heart and the ionic mechanisms underlying a specific phenomenon. Once validated, mathematical models can be used for making predictions and testing hypotheses, thus suggesting potential therapeutic targets. This PhD thesis aims to apply computational cardiac modelling of human single cell action potential (AP) to three clinical scenarios, in order to gain new insights into the ionic mechanisms involved in the electrophysiological changes observed in vitro and/or in vivo. The first context is blood electrolyte variations, which may occur in patients due to different pathologies and/or therapies. In particular, we focused on extracellular Ca2+ and its effect on the AP duration (APD). The second context is haemodialysis (HD) therapy: in addition to blood electrolyte variations, patients undergo a lot of other different changes during HD, e.g. heart rate, cell volume, pH, and sympatho-vagal balance. The third context is human hypertrophic cardiomyopathy (HCM), a genetic disorder characterised by an increased arrhythmic risk, and still lacking a specific pharmacological treatment.