20 resultados para advanced gastric cancer


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Objective The objective of this study was to develop a clinical nomogram to predict gallium-68 prostate-specific membrane antigen positron emission tomography/computed tomography (68Ga-PSMA-11-PET/CT) positivity in different clinical settings of PSA failure. Materials and methods Seven hundred three (n = 703) prostate cancer (PCa) patients with confirmed PSA failure after radical therapy were enrolled. Patients were stratified according to different clinical settings (first-time biochemical recurrence [BCR]: group 1; BCR after salvage therapy: group 2; biochemical persistence after radical prostatectomy [BCP]: group 3; advanced stage PCa before second-line systemic therapies: group 4). First, we assessed 68Ga-PSMA-11-PET/CT positivity rate. Second, multivariable logistic regression analyses were used to determine predictors of positive scan. Third, regression-based coefficients were used to develop a nomogram predicting positive 68Ga-PSMA-11-PET/CT result and 200 bootstrap resamples were used for internal validation. Fourth, receiver operating characteristic (ROC) analysis was used to identify the most informative nomogram’s derived cut-off. Decision curve analysis (DCA) was implemented to quantify nomogram’s clinical benefit. Results 68Ga-PSMA-11-PET/CT overall positivity rate was 51.2%, while it was 40.3% in group 1, 54% in group 2, 60.5% in group 3, and 86.9% in group 4 (p < 0.001). At multivariable analyses, ISUP grade, PSA, PSA doubling time, and clinical setting were independent predictors of a positive scan (all p ≤ 0.04). A nomogram based on covariates included in the multivariate model demonstrated a bootstrap-corrected accuracy of 82%. The nomogram-derived best cut-off value was 40%. In DCA, the nomogram revealed clinical net benefit of > 10%. Conclusions This novel nomogram proved its good accuracy in predicting a positive scan, with values ≥ 40% providing the most informative cut-off in counselling patients to 68Ga-PSMA-11-PET/CT. This tool might be important as a guide to clinicians in the best use of PSMA-based PET imaging.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Cancer is a disease that has plagued scientists for decades, and how to treat cancer and its complications are inevitable topics in current scientific research. Cancer pain is a major factor that reduces the quality of life of patients. Therefore, the development of analgesic agents with minimal adverse side effects, especially with low addiction, has attracted more and more attention. Among them, opioid analgesics are widely used to alleviate cancer pain and improve the quality of life of patients with advanced cancer, such as in the palliative therapy. Although peptide drugs are efficient, selective and safe, they have several unignorable disadvantages such as poor biological stability, rapid excretion, difficulty in penetrate blood brain barrier. In order to solve these problems, peptidomimetics were developed by introducing unnatural/modified amino acids, decorated peptide backbone, conformational restrictions and secondary structure mimics in peptide sequence. Compared with peptides, peptidomimetics have improved biological stability, increased bioavailability, high affinity and selectivity for receptor binding, and decreased adverse side effects. As the second part of this thesis, I explored the opportunity to design peptide-functionalized responsive biomaterials for the detection of cancer cell and the selective delivery of cytotoxic drugs. The conjugation of peptides with biomaterials enhanced the stability of the loaded drugs, improved targeted delivery, decreased side effects, and increased bioavailability. The precise and controllable drug delivery platform has profound application prospects in cancer treatment. Grafting specific peptides sequence on the surface of biomaterials can satisfy different drug delivery demands according to the characteristics of both peptides and biomaterials. For example, the introduction of tumor-targeting peptides can guide biomaterials into tumor lesions, and blood-brain barrier (BBB) shuttle peptides can lead biomaterials to penetrate the BBB, etc.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Plasma medicine is a branch of plasma-promising biomedical applications that uses cold atmospheric plasma (CAP) as a therapeutic agent in treating a wide range of medical conditions including cancer. Epithelial ovarian cancer (EOC) is a highly malignant and aggressive form of ovarian cancer, and most patients are diagnosed at advanced stages which significantly reduces the chances of successful treatment. Treatment resistance is also common, highlighting the need for novel therapies to be developed to treat EOC. Research in Plasma Medicine has revealed that plasma has unique properties suitable for biomedical applications and medical therapies, including responses to hormetic stimuli. However, the exact mechanisms by which CAP works at the molecular level are not yet fully understood. In this regard, the main goal of this thesis is to identify a possible adjuvant therapy for cancer, which could exert a cytotoxic effect, without damaging the surrounding healthy cells. An examination of different plasma-activated liquids (PALs) revealed their potential as effective tools for significantly inhibiting the growth of EOC. The dose-response profile between PALs and their targeted cytotoxic effects on EOC cells without affecting healthy cells was established. Additionally, it was validated that PALs exert distinct effects on different subtypes of EOC, possibly linked to the cells' metabolism. This suggests the potential for developing new, personalized anticancer strategies. Furthermore, it was observed that CAP treatment can alter the chemistry of a biomolecule present in PAL, impacting its cytotoxic activity. The effectiveness of the treatment was also preliminarily evaluated in 3D cultures, opening the door for further investigation of a possible correlation between the tumor microenvironment and PALs' resistance. These findings shed light on the intricate interplay between CAP and the liquid substrate and cell behaviour, providing valuable insights for the development of a novel and promising CAP-based cancer treatment for clinical application.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Chemotherapeutic drugs can in many ways disrupt the replication machinery triggering apoptosis in cancer cells: some act directly on DNA and others block the enzymes involved in preparing DNA for replication. Cisplatin-based drugs are common as first-line cancer chemotherapics. Another example is etoposide, a molecule that blocks topoisomerase II α leading to the inhibition of dsDNA replication. Despite their efficacy, cancer cells can respond to these treatments over time by overtaking their effects, leading to drug resistance. Chemoresistance events can be triggered by the action of enzymes like DNA polymerase ƞ (Pol η). This polymerase helps also to bypass drug-induced damage in cancer cells, allowing DNA replication and cancer cells proliferation even when cisplatin-based chemotherapeutic drugs are in use. Pol ƞ is a promising drug discovery target, whose inhibition would help in overcoming of drug resistance. This study aims to identify a potent and selective Pol ƞ inhibitor able to improve the efficacy of platinum-based chemotherapeutic drugs. We report the discovery of compound 64 (ARN24964), after an extensive SAR reporting 35 analogs. We evaluated compound 64 on four different cell lines. Interestingly, the molecule is a Pol η inhibitor able to act synergistically with cisplatin. Moreover, we also synthesized a prodrug form that allowed us to improve its stability and the bioavailability. This compound represents an advanced scaffold featuring good potency and DMPK properties. In addition to this central theme, this thesis also describes our efforts in developing and characterize a novel hybrid inhibitor/poison for the human topoisomerase II α enzyme. In particular, we performed specific assays to study the inhibiton of Topoisomesare II α and we evaluated compounds effect on three cancer cell lines. These studies allowed us to identify a compound that is able to inhibit the enzyme with a good pK and a good potency.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The treatment of metastatic castration-resistant prostate cancer (mCRPC) is currently characterized by several drugs with different mechanisms of action, such as new generation hormonal agents (abiraterone, enzalutamide), chemotherapy (docetaxel, cabazitaxel), PARP inhibitors (olaparib) and radiometabolic therapies (radium-223, LuPSMA). There is an urgent need to identify biomarkers to guide personalized therapy in mCRPC. In recent years, the status of androgen receptor (AR) gene detected in liquid biopsy has been associated with outcomes in patients treated with abiraterone or enzalutamide. More recently, plasma tumor DNA (ptDNA) and its changes during treatment have been identified as early indicators of response to anticancer treatments. Recent works also suggested a potential role of tumor-related metabolic parameters of 18Fluoro-Choline Positron Emission Tomography (F18CH-PET)-computed tomography (CT) as a prognostic tool in mCRCP. Other clinical features, such as the presence of visceral metastases, have been correlated with outcome in mCRPC patients. Recent studies conducted by our research group have designed and validated a prognostic model based on the combination of molecular characteristics (ptDNA levels), metabolic features found in basal FCH PET scans (metabolic tumor volume values, MTV), clinical parameters (absence or presence of visceral metastases), and laboratory tests (serum lactate dehydrogenase levels, LDH). Within this PhD project, 30 patients affected by mCRPC, pre-treated with abiraterone or enzalutamide, candidate for taxane-based treatments (docetaxel or cabazitaxel), have been prospectively evaluated. The prognostic model previously described was applied to this population, to interrogate its prognostic power in a more advanced cohort of patients, resulting in a further external validation of the tool.