18 resultados para Weak and Strong Solutions
Resumo:
The PhD thesis analyses the financial services regime in international economic law from the perspective of the difficult relationship between trade liberalisation and prudential measures. Financial stability plays a fundamental role for the well-being and well-functioning of the global economy, but, it is at the same time a complex sector to regulate and supervise and, especially after the 2007-08 economic crisis, States have tightened up their regulation of financial services, introducing more severe and protectionist prudential measures. However, in an increasingly interconnected global economy, the harmonization of prudential regulation at the international level is an essential step to guarantee integrity, fairness and stability of financial markets and trade. The research analyses the tools at disposition to achieve this aim, the related problematic issues and the perspectives and possible solutions for the future, starting from the World Trade Organization (WTO) legal framework and its General Agreement on Trade in Services (GATS), devoted to discipline trade in services among the WTO Members. Then, the research moves to a second legal instrument, the Free Trade Agreements (FTAs), which has witnessed a remarkable spread in the last decades. Finally, the research addresses the international standards, developed by supranational entities and implemented by an increasing number of States, as they offer rules and guidelines adequate to update the international financial scenario. Nevertheless, the international standards alone cannot be the solution because, first, they are not mandatory, as governments decide voluntarily to apply them and, second, their decision-making process do not respect the requirements of transparency and representative membership. In light of this analysis, the thesis aims at providing an answer to its research question: how to give more certainty to States and economic operators in the planning of the domestic disciplines and business activities in order to provide a sound and stable international financial system.
Resumo:
The Structural Health Monitoring (SHM) research area is increasingly investigated due to its high potential in reducing the maintenance costs and in ensuring the systems safety in several industrial application fields. A growing demand of new SHM systems, permanently embedded into the structures, for savings in weight and cabling, comes from the aeronautical and aerospace application fields. As consequence, the embedded electronic devices are to be wirelessly connected and battery powered. As result, a low power consumption is requested. At the same time, high performance in defects or impacts detection and localization are to be ensured to assess the structural integrity. To achieve these goals, the design paradigms can be changed together with the associate signal processing. The present thesis proposes design strategies and unconventional solutions, suitable both for real-time monitoring and periodic inspections, relying on piezo-transducers and Ultrasonic Guided Waves. In the first context, arrays of closely located sensors were designed, according to appropriate optimality criteria, by exploiting sensors re-shaping and optimal positioning, to achieve improved damages/impacts localisation performance in noisy environments. An additional sensor re-shaping procedure was developed to tackle another well-known issue which arises in realistic scenario, namely the reverberation. A novel sensor, able to filter undesired mechanical boundaries reflections, was validated via simulations based on the Green's functions formalism and FEM. In the active SHM context, a novel design methodology was used to develop a single transducer, called Spectrum-Scanning Acoustic Transducer, to actively inspect a structure. It can estimate the number of defects and their distances with an accuracy of 2[cm]. It can also estimate the damage angular coordinate with an equivalent mainlobe aperture of 8[deg], when a 24[cm] radial gap between two defects is ensured. A suitable signal processing was developed in order to limit the computational cost, allowing its use with embedded electronic devices.
Resumo:
As people spend a third of their lives at work and, in most cases, indoors, the work environment assumes crucial importance. The continuous and dynamic interaction between people and the working environment surrounding them produces physiological and psychological effects on operators. Recognizing the substantial impact of comfort and well-being on employee satisfaction and job performance, the literature underscores the need for industries to implement indoor environment control strategies to ensure long-term success and profitability. However, managing physical risks (i.e., ergonomic and microclimate) in industrial environments is often constrained by production and energy requirements. In the food processing industry, for example, the safety of perishable products dictates storage temperatures that do not allow for operator comfort. Conversely, warehouses dedicated to non-perishable products often lack cooling systems to limit energy expenditure, reaching high temperatures in the summer period. Moreover, exceptional events, like the COVID-19 pandemic, introduce new constraints, with recommendations impacting thermal stress and respiratory health. Furthermore, the thesis highlights how workers' variables, particularly the aging process, reduce tolerance to environmental stresses. Consequently, prolonged exposure to environmental stress conditions at work results in cardiovascular disease and musculoskeletal disorders. In response to the global trend of an aging workforce, the thesis bridges a literature gap by proposing methods and models that integrate the age factor into comfort assessment. It aims to present technical and technological solutions to mitigate microclimate risks in industrial environments, ultimately seeking innovative ways to enhance the aging workforce's comfort, performance, experience, and skills. The research outlines a logical-conceptual scheme with three main areas of focus: analyzing factors influencing the work environment, recognizing constraints to worker comfort, and designing solutions. The results significantly contribute to science by laying the foundation for new research in worker health and safety in an ageing working population's extremely current industrial context.