24 resultados para Ubiquitous and pervasive computing
Resumo:
The term Ambient Intelligence (AmI) refers to a vision on the future of the information society where smart, electronic environment are sensitive and responsive to the presence of people and their activities (Context awareness). In an ambient intelligence world, devices work in concert to support people in carrying out their everyday life activities, tasks and rituals in an easy, natural way using information and intelligence that is hidden in the network connecting these devices. This promotes the creation of pervasive environments improving the quality of life of the occupants and enhancing the human experience. AmI stems from the convergence of three key technologies: ubiquitous computing, ubiquitous communication and natural interfaces. Ambient intelligent systems are heterogeneous and require an excellent cooperation between several hardware/software technologies and disciplines, including signal processing, networking and protocols, embedded systems, information management, and distributed algorithms. Since a large amount of fixed and mobile sensors embedded is deployed into the environment, the Wireless Sensor Networks is one of the most relevant enabling technologies for AmI. WSN are complex systems made up of a number of sensor nodes which can be deployed in a target area to sense physical phenomena and communicate with other nodes and base stations. These simple devices typically embed a low power computational unit (microcontrollers, FPGAs etc.), a wireless communication unit, one or more sensors and a some form of energy supply (either batteries or energy scavenger modules). WNS promises of revolutionizing the interactions between the real physical worlds and human beings. Low-cost, low-computational power, low energy consumption and small size are characteristics that must be taken into consideration when designing and dealing with WSNs. To fully exploit the potential of distributed sensing approaches, a set of challengesmust be addressed. Sensor nodes are inherently resource-constrained systems with very low power consumption and small size requirements which enables than to reduce the interference on the physical phenomena sensed and to allow easy and low-cost deployment. They have limited processing speed,storage capacity and communication bandwidth that must be efficiently used to increase the degree of local ”understanding” of the observed phenomena. A particular case of sensor nodes are video sensors. This topic holds strong interest for a wide range of contexts such as military, security, robotics and most recently consumer applications. Vision sensors are extremely effective for medium to long-range sensing because vision provides rich information to human operators. However, image sensors generate a huge amount of data, whichmust be heavily processed before it is transmitted due to the scarce bandwidth capability of radio interfaces. In particular, in video-surveillance, it has been shown that source-side compression is mandatory due to limited bandwidth and delay constraints. Moreover, there is an ample opportunity for performing higher-level processing functions, such as object recognition that has the potential to drastically reduce the required bandwidth (e.g. by transmitting compressed images only when something ‘interesting‘ is detected). The energy cost of image processing must however be carefully minimized. Imaging could play and plays an important role in sensing devices for ambient intelligence. Computer vision can for instance be used for recognising persons and objects and recognising behaviour such as illness and rioting. Having a wireless camera as a camera mote opens the way for distributed scene analysis. More eyes see more than one and a camera system that can observe a scene from multiple directions would be able to overcome occlusion problems and could describe objects in their true 3D appearance. In real-time, these approaches are a recently opened field of research. In this thesis we pay attention to the realities of hardware/software technologies and the design needed to realize systems for distributed monitoring, attempting to propose solutions on open issues and filling the gap between AmI scenarios and hardware reality. The physical implementation of an individual wireless node is constrained by three important metrics which are outlined below. Despite that the design of the sensor network and its sensor nodes is strictly application dependent, a number of constraints should almost always be considered. Among them: • Small form factor to reduce nodes intrusiveness. • Low power consumption to reduce battery size and to extend nodes lifetime. • Low cost for a widespread diffusion. These limitations typically result in the adoption of low power, low cost devices such as low powermicrocontrollers with few kilobytes of RAMand tenth of kilobytes of program memory with whomonly simple data processing algorithms can be implemented. However the overall computational power of the WNS can be very large since the network presents a high degree of parallelism that can be exploited through the adoption of ad-hoc techniques. Furthermore through the fusion of information from the dense mesh of sensors even complex phenomena can be monitored. In this dissertation we present our results in building several AmI applications suitable for a WSN implementation. The work can be divided into two main areas:Low Power Video Sensor Node and Video Processing Alghoritm and Multimodal Surveillance . Low Power Video Sensor Nodes and Video Processing Alghoritms In comparison to scalar sensors, such as temperature, pressure, humidity, velocity, and acceleration sensors, vision sensors generate much higher bandwidth data due to the two-dimensional nature of their pixel array. We have tackled all the constraints listed above and have proposed solutions to overcome the current WSNlimits for Video sensor node. We have designed and developed wireless video sensor nodes focusing on the small size and the flexibility of reuse in different applications. The video nodes target a different design point: the portability (on-board power supply, wireless communication), a scanty power budget (500mW),while still providing a prominent level of intelligence, namely sophisticated classification algorithmand high level of reconfigurability. We developed two different video sensor node: The device architecture of the first one is based on a low-cost low-power FPGA+microcontroller system-on-chip. The second one is based on ARM9 processor. Both systems designed within the above mentioned power envelope could operate in a continuous fashion with Li-Polymer battery pack and solar panel. Novel low power low cost video sensor nodes which, in contrast to sensors that just watch the world, are capable of comprehending the perceived information in order to interpret it locally, are presented. Featuring such intelligence, these nodes would be able to cope with such tasks as recognition of unattended bags in airports, persons carrying potentially dangerous objects, etc.,which normally require a human operator. Vision algorithms for object detection, acquisition like human detection with Support Vector Machine (SVM) classification and abandoned/removed object detection are implemented, described and illustrated on real world data. Multimodal surveillance: In several setup the use of wired video cameras may not be possible. For this reason building an energy efficient wireless vision network for monitoring and surveillance is one of the major efforts in the sensor network community. Energy efficiency for wireless smart camera networks is one of the major efforts in distributed monitoring and surveillance community. For this reason, building an energy efficient wireless vision network for monitoring and surveillance is one of the major efforts in the sensor network community. The Pyroelectric Infra-Red (PIR) sensors have been used to extend the lifetime of a solar-powered video sensor node by providing an energy level dependent trigger to the video camera and the wireless module. Such approach has shown to be able to extend node lifetime and possibly result in continuous operation of the node.Being low-cost, passive (thus low-power) and presenting a limited form factor, PIR sensors are well suited for WSN applications. Moreover techniques to have aggressive power management policies are essential for achieving long-termoperating on standalone distributed cameras needed to improve the power consumption. We have used an adaptive controller like Model Predictive Control (MPC) to help the system to improve the performances outperforming naive power management policies.
Resumo:
Throughout the twentieth century statistical methods have increasingly become part of experimental research. In particular, statistics has made quantification processes meaningful in the soft sciences, which had traditionally relied on activities such as collecting and describing diversity rather than timing variation. The thesis explores this change in relation to agriculture and biology, focusing on analysis of variance and experimental design, the statistical methods developed by the mathematician and geneticist Ronald Aylmer Fisher during the 1920s. The role that Fisher’s methods acquired as tools of scientific research, side by side with the laboratory equipment and the field practices adopted by research workers, is here investigated bottom-up, beginning with the computing instruments and the information technologies that were the tools of the trade for statisticians. Four case studies show under several perspectives the interaction of statistics, computing and information technologies, giving on the one hand an overview of the main tools – mechanical calculators, statistical tables, punched and index cards, standardised forms, digital computers – adopted in the period, and on the other pointing out how these tools complemented each other and were instrumental for the development and dissemination of analysis of variance and experimental design. The period considered is the half-century from the early 1920s to the late 1960s, the institutions investigated are Rothamsted Experimental Station and the Galton Laboratory, and the statisticians examined are Ronald Fisher and Frank Yates.
Resumo:
Pervasive Sensing is a recent research trend that aims at providing widespread computing and sensing capabilities to enable the creation of smart environments that can sense, process, and act by considering input coming from both people and devices. The capabilities necessary for Pervasive Sensing are nowadays available on a plethora of devices, from embedded devices to PCs and smartphones. The wide availability of new devices and the large amount of data they can access enable a wide range of novel services in different areas, spanning from simple data collection systems to socially-aware collaborative filtering. However, the strong heterogeneity and unreliability of devices and sensors poses significant challenges. So far, existing works on Pervasive Sensing have focused only on limited portions of the whole stack of available devices and data that they can use, to propose and develop mainly vertical solutions. The push from academia and industry for this kind of services shows that time is mature for a more general support framework for Pervasive Sensing solutions able to enhance frail architectures, promote a well balanced usage of resources on different devices, and enable the widest possible access to sensed data, while ensuring a minimal energy consumption on battery-operated devices. This thesis focuses on pervasive sensing systems to extract design guidelines as foundation of a comprehensive reference model for multi-tier Pervasive Sensing applications. The validity of the proposed model is tested in five different scenarios that present peculiar and different requirements, and different hardware and sensors. The ease of mapping from the proposed logical model to the real implementations and the positive performance result campaigns prove the quality of the proposed approach and offer a reliable reference model, together with a direction for the design and deployment of future Pervasive Sensing applications.
Resumo:
This PhD thesis discusses the impact of Cloud Computing infrastructures on Digital Forensics in the twofold role of target of investigations and as a helping hand to investigators. The Cloud offers a cheap and almost limitless computing power and storage space for data which can be leveraged to commit either new or old crimes and host related traces. Conversely, the Cloud can help forensic examiners to find clues better and earlier than traditional analysis applications, thanks to its dramatically improved evidence processing capabilities. In both cases, a new arsenal of software tools needs to be made available. The development of this novel weaponry and its technical and legal implications from the point of view of repeatability of technical assessments is discussed throughout the following pages and constitutes the unprecedented contribution of this work
Resumo:
Internet of Things systems are pervasive systems evolved from cyber-physical to large-scale systems. Due to the number of technologies involved, software development involves several integration challenges. Among them, the ones preventing proper integration are those related to the system heterogeneity, and thus addressing interoperability issues. From a software engineering perspective, developers mostly experience the lack of interoperability in the two phases of software development: programming and deployment. On the one hand, modern software tends to be distributed in several components, each adopting its most-appropriate technology stack, pushing programmers to code in a protocol- and data-agnostic way. On the other hand, each software component should run in the most appropriate execution environment and, as a result, system architects strive to automate the deployment in distributed infrastructures. This dissertation aims to improve the development process by introducing proper tools to handle certain aspects of the system heterogeneity. Our effort focuses on three of these aspects and, for each one of those, we propose a tool addressing the underlying challenge. The first tool aims to handle heterogeneity at the transport and application protocol level, the second to manage different data formats, while the third to obtain optimal deployment. To realize the tools, we adopted a linguistic approach, i.e.\ we provided specific linguistic abstractions that help developers to increase the expressive power of the programming language they use, writing better solutions in more straightforward ways. To validate the approach, we implemented use cases to show that the tools can be used in practice and that they help to achieve the expected level of interoperability. In conclusion, to move a step towards the realization of an integrated Internet of Things ecosystem, we target programmers and architects and propose them to use the presented tools to ease the software development process.
Resumo:
Early definitions of Smart Building focused almost entirely on the technology aspect and did not suggest user interaction at all. Indeed, today we would attribute it more to the concept of the automated building. In this sense, control of comfort conditions inside buildings is a problem that is being well investigated, since it has a direct effect on users’ productivity and an indirect effect on energy saving. Therefore, from the users’ perspective, a typical environment can be considered comfortable, if it’s capable of providing adequate thermal comfort, visual comfort and indoor air quality conditions and acoustic comfort. In the last years, the scientific community has dealt with many challenges, especially from a technological point of view. For instance, smart sensing devices, the internet, and communication technologies have enabled a new paradigm called Edge computing that brings computation and data storage closer to the location where it is needed, to improve response times and save bandwidth. This has allowed us to improve services, sustainability and decision making. Many solutions have been implemented such as smart classrooms, controlling the thermal condition of the building, monitoring HVAC data for energy-efficient of the campus and so forth. Though these projects provide to the realization of smart campus, a framework for smart campus is yet to be determined. These new technologies have also introduced new research challenges: within this thesis work, some of the principal open challenges will be faced, proposing a new conceptual framework, technologies and tools to move forward the actual implementation of smart campuses. Keeping in mind, several problems known in the literature have been investigated: the occupancy detection, noise monitoring for acoustic comfort, context awareness inside the building, wayfinding indoor, strategic deployment for air quality and books preserving.
Resumo:
The present Thesis reports on the various research projects to which I have contributed during my PhD period, working with several research groups, and whose results have been communicated in a number of scientific publications. The main focus of my research activity was to learn, test, exploit and extend the recently developed vdW-DFT (van der Waals corrected Density Functional Theory) methods for computing the structural, vibrational and electronic properties of ordered molecular crystals from first principles. A secondary, and more recent, research activity has been the analysis with microelectrostatic methods of Molecular Dynamics (MD) simulations of disordered molecular systems. While only very unreliable methods based on empirical models were practically usable until a few years ago, accurate calculations of the crystal energy are now possible, thanks to very fast modern computers and to the excellent performance of the best vdW-DFT methods. Accurate energies are particularly important for describing organic molecular solids, since they often exhibit several alternative crystal structures (polymorphs), with very different packing arrangements but very small energy differences. Standard DFT methods do not describe the long-range electron correlations which give rise to the vdW interactions. Although weak, these interactions are extremely sensitive to the packing arrangement, and neglecting them used to be a problem. The calculations of reliable crystal structures and vibrational frequencies has been made possible only recently, thanks to development of some good representations of the vdW contribution to the energy (known as “vdW corrections”).
Resumo:
Modern scientific discoveries are driven by an unsatisfiable demand for computational resources. High-Performance Computing (HPC) systems are an aggregation of computing power to deliver considerably higher performance than one typical desktop computer can provide, to solve large problems in science, engineering, or business. An HPC room in the datacenter is a complex controlled environment that hosts thousands of computing nodes that consume electrical power in the range of megawatts, which gets completely transformed into heat. Although a datacenter contains sophisticated cooling systems, our studies indicate quantitative evidence of thermal bottlenecks in real-life production workload, showing the presence of significant spatial and temporal thermal and power heterogeneity. Therefore minor thermal issues/anomalies can potentially start a chain of events that leads to an unbalance between the amount of heat generated by the computing nodes and the heat removed by the cooling system originating thermal hazards. Although thermal anomalies are rare events, anomaly detection/prediction in time is vital to avoid IT and facility equipment damage and outage of the datacenter, with severe societal and business losses. For this reason, automated approaches to detect thermal anomalies in datacenters have considerable potential. This thesis analyzed and characterized the power and thermal characteristics of a Tier0 datacenter (CINECA) during production and under abnormal thermal conditions. Then, a Deep Learning (DL)-powered thermal hazard prediction framework is proposed. The proposed models are validated against real thermal hazard events reported for the studied HPC cluster while in production. This thesis is the first empirical study of thermal anomaly detection and prediction techniques of a real large-scale HPC system to the best of my knowledge. For this thesis, I used a large-scale dataset, monitoring data of tens of thousands of sensors for around 24 months with a data collection rate of around 20 seconds.
Resumo:
Analog In-memory Computing (AIMC) has been proposed in the context of Beyond Von Neumann architectures as a valid strategy to reduce internal data transfers energy consumption and latency, and to improve compute efficiency. The aim of AIMC is to perform computations within the memory unit, typically leveraging the physical features of memory devices. Among resistive Non-volatile Memories (NVMs), Phase-change Memory (PCM) has become a promising technology due to its intrinsic capability to store multilevel data. Hence, PCM technology is currently investigated to enhance the possibilities and the applications of AIMC. This thesis aims at exploring the potential of new PCM-based architectures as in-memory computational accelerators. In a first step, a preliminar experimental characterization of PCM devices has been carried out in an AIMC perspective. PCM cells non-idealities, such as time-drift, noise, and non-linearity have been studied to develop a dedicated multilevel programming algorithm. Measurement-based simulations have been then employed to evaluate the feasibility of PCM-based operations in the fields of Deep Neural Networks (DNNs) and Structural Health Monitoring (SHM). Moreover, a first testchip has been designed and tested to evaluate the hardware implementation of Multiply-and-Accumulate (MAC) operations employing PCM cells. This prototype experimentally demonstrates the possibility to reach a 95% MAC accuracy with a circuit-level compensation of cells time drift and non-linearity. Finally, empirical circuit behavior models have been included in simulations to assess the use of this technology in specific DNN applications, and to enhance the potentiality of this innovative computation approach.