20 resultados para Topology-based methods


Relevância:

40.00% 40.00%

Publicador:

Resumo:

The Peer-to-Peer network paradigm is drawing the attention of both final users and researchers for its features. P2P networks shift from the classic client-server approach to a high level of decentralization where there is no central control and all the nodes should be able not only to require services, but to provide them to other peers as well. While on one hand such high level of decentralization might lead to interesting properties like scalability and fault tolerance, on the other hand it implies many new problems to deal with. A key feature of many P2P systems is openness, meaning that everybody is potentially able to join a network with no need for subscription or payment systems. The combination of openness and lack of central control makes it feasible for a user to free-ride, that is to increase its own benefit by using services without allocating resources to satisfy other peers’ requests. One of the main goals when designing a P2P system is therefore to achieve cooperation between users. Given the nature of P2P systems based on simple local interactions of many peers having partial knowledge of the whole system, an interesting way to achieve desired properties on a system scale might consist in obtaining them as emergent properties of the many interactions occurring at local node level. Two methods are typically used to face the problem of cooperation in P2P networks: 1) engineering emergent properties when designing the protocol; 2) study the system as a game and apply Game Theory techniques, especially to find Nash Equilibria in the game and to reach them making the system stable against possible deviant behaviors. In this work we present an evolutionary framework to enforce cooperative behaviour in P2P networks that is alternative to both the methods mentioned above. Our approach is based on an evolutionary algorithm inspired by computational sociology and evolutionary game theory, consisting in having each peer periodically trying to copy another peer which is performing better. The proposed algorithms, called SLAC and SLACER, draw inspiration from tag systems originated in computational sociology, the main idea behind the algorithm consists in having low performance nodes copying high performance ones. The algorithm is run locally by every node and leads to an evolution of the network both from the topology and from the nodes’ strategy point of view. Initial tests with a simple Prisoners’ Dilemma application show how SLAC is able to bring the network to a state of high cooperation independently from the initial network conditions. Interesting results are obtained when studying the effect of cheating nodes on SLAC algorithm. In fact in some cases selfish nodes rationally exploiting the system for their own benefit can actually improve system performance from the cooperation formation point of view. The final step is to apply our results to more realistic scenarios. We put our efforts in studying and improving the BitTorrent protocol. BitTorrent was chosen not only for its popularity but because it has many points in common with SLAC and SLACER algorithms, ranging from the game theoretical inspiration (tit-for-tat-like mechanism) to the swarms topology. We discovered fairness, meant as ratio between uploaded and downloaded data, to be a weakness of the original BitTorrent protocol and we drew inspiration from the knowledge of cooperation formation and maintenance mechanism derived from the development and analysis of SLAC and SLACER, to improve fairness and tackle freeriding and cheating in BitTorrent. We produced an extension of BitTorrent called BitFair that has been evaluated through simulation and has shown the abilities of enforcing fairness and tackling free-riding and cheating nodes.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The subject of this Ph.D. research thesis is the development and application of multiplexed analytical methods based on bioluminescent whole-cell biosensors. One of the main goals of analytical chemistry is multianalyte testing in which two or more analytes are measured simultaneously in a single assay. The advantages of multianalyte testing are work simplification, high throughput, and reduction in the overall cost per test. The availability of multiplexed portable analytical systems is of particular interest for on-field analysis of clinical, environmental or food samples as well as for the drug discovery process. To allow highly sensitive and selective analysis, these devices should combine biospecific molecular recognition with ultrasensitive detection systems. To address the current need for rapid, highly sensitive and inexpensive devices for obtaining more data from each sample,genetically engineered whole-cell biosensors as biospecific recognition element were combined with ultrasensitive bioluminescence detection techniques. Genetically engineered cell-based sensing systems were obtained by introducing into bacterial, yeast or mammalian cells a vector expressing a reporter protein whose expression is controlled by regulatory proteins and promoter sequences. The regulatory protein is able to recognize the presence of the analyte (e.g., compounds with hormone-like activity, heavy metals…) and to consequently activate the expression of the reporter protein that can be readily measured and directly related to the analyte bioavailable concentration in the sample. Bioluminescence represents the ideal detection principle for miniaturized analytical devices and multiplexed assays thanks to high detectability in small sample volumes allowing an accurate signal localization and quantification. In the first chapter of this dissertation is discussed the obtainment of improved bioluminescent proteins emitting at different wavelenghts, in term of increased thermostability, enhanced emission decay kinetic and spectral resolution. The second chapter is mainly focused on the use of these proteins in the development of whole-cell based assay with improved analytical performance. In particular since the main drawback of whole-cell biosensors is the high variability of their analyte specific response mainly caused by variations in cell viability due to aspecific effects of the sample’s matrix, an additional bioluminescent reporter has been introduced to correct the analytical response thus increasing the robustness of the bioassays. The feasibility of using a combination of two or more bioluminescent proteins for obtaining biosensors with internal signal correction or for the simultaneous detection of multiple analytes has been demonstrated by developing a dual reporter yeast based biosensor for androgenic activity measurement and a triple reporter mammalian cell-based biosensor for the simultaneous monitoring of two CYP450 enzymes activation, involved in cholesterol degradation, with the use of two spectrally resolved intracellular luciferases and a secreted luciferase as a control for cells viability. In the third chapter is presented the development of a portable multianalyte detection system. In order to develop a portable system that can be used also outside the laboratory environment even by non skilled personnel, cells have been immobilized into a new biocompatible and transparent polymeric matrix within a modified clear bottom black 384 -well microtiter plate to obtain a bioluminescent cell array. The cell array was placed in contact with a portable charge-coupled device (CCD) light sensor able to localize and quantify the luminescent signal produced by different bioluminescent whole-cell biosensors. This multiplexed biosensing platform containing whole-cell biosensors was successfully used to measure the overall toxicity of a given sample as well as to obtain dose response curves for heavy metals and to detect hormonal activity in clinical samples (PCT/IB2010/050625: “Portable device based on immobilized cells for the detection of analytes.” Michelini E, Roda A, Dolci LS, Mezzanotte L, Cevenini L , 2010). At the end of the dissertation some future development steps are also discussed in order to develop a point of care (POCT) device that combine portability, minimum sample pre-treatment and highly sensitive multiplexed assays in a short assay time. In this POCT perspective, field-flow fractionation (FFF) techniques, in particular gravitational variant (GrFFF) that exploit the earth gravitational field to structure the separation, have been investigated for cells fractionation, characterization and isolation. Thanks to the simplicity of its equipment, amenable to miniaturization, the GrFFF techniques appears to be particularly suited for its implementation in POCT devices and may be used as pre-analytical integrated module to be applied directly to drive target analytes of raw samples to the modules where biospecifc recognition reactions based on ultrasensitive bioluminescence detection occurs, providing an increase in overall analytical output.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Perfluoroalkylated substances are a group of chemicals that have been largely employed during the last 60 years in several applications, widely spreading and accumulating in the environment due to their extreme resistance to degradation. As a consequence, they have been found also in various types of food as well as in drinking water, proving that they can easily reach humans through the diet. The available information concerning their adverse effects on health has recently increased the interest towards these contaminants and highlighted the importance of investigating all the potential sources of human exposure, among which diet was proved to be the most relevant. This need has been underlined by the European Union through Recommendation 2010/161/EU: in this document, Member States were called to monitor their presence of in food, producing accurate estimations of human exposure. The purpose of the research presented in this thesis, which is the result of a partnership between an Italian and a French laboratory, was to develop reliable tools for the analysis of these pollutants in food, to be used for generating data on potentially contaminated matrices. An efficient method based on liquid chromatography-mass spectrometry for the detection of 16 different perfluorinated compounds in milk has been validated in accordance with current European regulation guidelines (2002/657/EC) and is currently under evaluation for ISO 17025 accreditation. The proposed technique was applied to cow, powder and human breast milk samples from Italy and France to produce a preliminary monitoring on the presence of these contaminants. In accordance with the above mentioned European Recommendation, this project led also to the development of a promising technique for the quantification of some precursors of these substances in fish. This method showed extremely satisfying performances in terms of linearity and limits of detection, and will be useful for future surveys.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Different types of proteins exist with diverse functions that are essential for living organisms. An important class of proteins is represented by transmembrane proteins which are specifically designed to be inserted into biological membranes and devised to perform very important functions in the cell such as cell communication and active transport across the membrane. Transmembrane β-barrels (TMBBs) are a sub-class of membrane proteins largely under-represented in structure databases because of the extreme difficulty in experimental structure determination. For this reason, computational tools that are able to predict the structure of TMBBs are needed. In this thesis, two computational problems related to TMBBs were addressed: the detection of TMBBs in large datasets of proteins and the prediction of the topology of TMBB proteins. Firstly, a method for TMBB detection was presented based on a novel neural network framework for variable-length sequence classification. The proposed approach was validated on a non-redundant dataset of proteins. Furthermore, we carried-out genome-wide detection using the entire Escherichia coli proteome. In both experiments, the method significantly outperformed other existing state-of-the-art approaches, reaching very high PPV (92%) and MCC (0.82). Secondly, a method was also introduced for TMBB topology prediction. The proposed approach is based on grammatical modelling and probabilistic discriminative models for sequence data labeling. The method was evaluated using a newly generated dataset of 38 TMBB proteins obtained from high-resolution data in the PDB. Results have shown that the model is able to correctly predict topologies of 25 out of 38 protein chains in the dataset. When tested on previously released datasets, the performances of the proposed approach were measured as comparable or superior to the current state-of-the-art of TMBB topology prediction.