17 resultados para Time-shift estimation


Relevância:

30.00% 30.00%

Publicador:

Resumo:

In the field of educational and psychological measurement, the shift from paper-based to computerized tests has become a prominent trend in recent years. Computerized tests allow for more complex and personalized test administration procedures, like Computerized Adaptive Testing (CAT). CAT, following the Item Response Theory (IRT) models, dynamically generates tests based on test-taker responses, driven by complex statistical algorithms. Even if CAT structures are complex, they are flexible and convenient, but concerns about test security should be addressed. Frequent item administration can lead to item exposure and cheating, necessitating preventive and diagnostic measures. In this thesis a method called "CHeater identification using Interim Person fit Statistic" (CHIPS) is developed, designed to identify and limit cheaters in real-time during test administration. CHIPS utilizes response times (RTs) to calculate an Interim Person fit Statistic (IPS), allowing for on-the-fly intervention using a more secret item bank. Also, a slight modification is proposed to overcome situations with constant speed, called Modified-CHIPS (M-CHIPS). A simulation study assesses CHIPS, highlighting its effectiveness in identifying and controlling cheaters. However, it reveals limitations when cheaters possess all correct answers. The M-CHIPS overcame this limitation. Furthermore, the method has shown not to be influenced by the cheaters’ ability distribution or the level of correlation between ability and speed of test-takers. Finally, the method has demonstrated flexibility for the choice of significance level and the transition from fixed-length tests to variable-length ones. The thesis discusses potential applications, including the suitability of the method for multiple-choice tests, assumptions about RT distribution and level of item pre-knowledge. Also limitations are discussed to explore future developments such as different RT distributions, unusual honest respondent behaviors, and field testing in real-world scenarios. In summary, CHIPS and M-CHIPS offer real-time cheating detection in CAT, enhancing test security and ability estimation while not penalizing test respondents.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This research activity aims at providing a reliable estimation of particular state variables or parameters concerning the dynamics and performance optimization of a MotoGP-class motorcycle, integrating the classical model-based approach with new methodologies involving artificial intelligence. The first topic of the research focuses on the estimation of the thermal behavior of the MotoGP carbon braking system. Numerical tools are developed to assess the instantaneous surface temperature distribution in the motorcycle's front brake discs. Within this application other important brake parameters are identified using Kalman filters, such as the disc convection coefficient and the power distribution in the disc-pads contact region. Subsequently, a physical model of the brake is built to estimate the instantaneous braking torque. However, the results obtained with this approach are highly limited by the knowledge of the friction coefficient (μ) between the disc rotor and the pads. Since the value of μ is a highly nonlinear function of many variables (namely temperature, pressure and angular velocity of the disc), an analytical model for the friction coefficient estimation appears impractical to establish. To overcome this challenge, an innovative hybrid solution is implemented, combining the benefit of artificial intelligence (AI) with classical model-based approach. Indeed, the disc temperature estimated through the thermal model previously implemented is processed by a machine learning algorithm that outputs the actual value of the friction coefficient thus improving the braking torque computation performed by the physical model of the brake. Finally, the last topic of this research activity regards the development of an AI algorithm to estimate the current sideslip angle of the motorcycle's front tire. While a single-track motorcycle kinematic model and IMU accelerometer signals theoretically enable sideslip calculation, the presence of accelerometer noise leads to a significant drift over time. To address this issue, a long short-term memory (LSTM) network is implemented.