20 resultados para Systems engineering
Resumo:
In recent years, the use of Reverse Engineering systems has got a considerable interest for a wide number of applications. Therefore, many research activities are focused on accuracy and precision of the acquired data and post processing phase improvements. In this context, this PhD Thesis deals with the definition of two novel methods for data post processing and data fusion between physical and geometrical information. In particular a technique has been defined for error definition in 3D points’ coordinates acquired by an optical triangulation laser scanner, with the aim to identify adequate correction arrays to apply under different acquisition parameters and operative conditions. Systematic error in data acquired is thus compensated, in order to increase accuracy value. Moreover, the definition of a 3D thermogram is examined. Object geometrical information and its thermal properties, coming from a thermographic inspection, are combined in order to have a temperature value for each recognizable point. Data acquired by an optical triangulation laser scanner are also used to normalize temperature values and make thermal data independent from thermal-camera point of view.
Resumo:
The present PhD thesis exploits the design skills I have been improving since my master thesis’ research. A brief description of the chapters’ content follows. Chapter 1: the simulation of a complete front–end is a very complex problem and, in particular, is the basis upon which the prediction of the overall performance of the system is possible. By means of a commercial EM simulation tool and a rigorous nonlinear/EM circuit co–simulation based on the Reciprocity Theorem, the above–mentioned prediction can be achieved and exploited for wireless links characterization. This will represent the theoretical basics of the entire present thesis and will be supported by two RF applications. Chapter 2: an extensive dissertation about Magneto–Dielectric (MD) materials will be presented, together with their peculiar characteristics as substrates for antenna miniaturization purposes. A designed and tested device for RF on–body applications will be described in detail. Finally, future research will be discussed. Chapter 3: this chapter will deal with the issue regarding the exploitation of renewable energy sources for low–energy consumption devices. Hence the problem related to the so–called energy harvesting will be tackled and a first attempt to deploy THz solar energy in an innovative way will be presented and discussed. Future research will be proposed as well. Chapter 4: graphene is a very promising material for devices to be exploited in the RF and THz frequency range for a wide range of engineering applications, including those ones marked as the main research goal of the present thesis. This chapter will present the results obtained during my research period at the National Institute for Research and Development in Microtechnologies (IMT) in Bucharest, Romania. It will concern the design and manufacturing of antennas and diodes made in graphene–based technology for detection/rectification purposes.
Resumo:
Self-organising pervasive ecosystems of devices are set to become a major vehicle for delivering infrastructure and end-user services. The inherent complexity of such systems poses new challenges to those who want to dominate it by applying the principles of engineering. The recent growth in number and distribution of devices with decent computational and communicational abilities, that suddenly accelerated with the massive diffusion of smartphones and tablets, is delivering a world with a much higher density of devices in space. Also, communication technologies seem to be focussing on short-range device-to-device (P2P) interactions, with technologies such as Bluetooth and Near-Field Communication gaining greater adoption. Locality and situatedness become key to providing the best possible experience to users, and the classic model of a centralised, enormously powerful server gathering and processing data becomes less and less efficient with device density. Accomplishing complex global tasks without a centralised controller responsible of aggregating data, however, is a challenging task. In particular, there is a local-to-global issue that makes the application of engineering principles challenging at least: designing device-local programs that, through interaction, guarantee a certain global service level. In this thesis, we first analyse the state of the art in coordination systems, then motivate the work by describing the main issues of pre-existing tools and practices and identifying the improvements that would benefit the design of such complex software ecosystems. The contribution can be divided in three main branches. First, we introduce a novel simulation toolchain for pervasive ecosystems, designed for allowing good expressiveness still retaining high performance. Second, we leverage existing coordination models and patterns in order to create new spatial structures. Third, we introduce a novel language, based on the existing ``Field Calculus'' and integrated with the aforementioned toolchain, designed to be usable for practical aggregate programming.
Resumo:
Traditional cell culture models have limitations in extrapolating functional mechanisms that underlie strategies of microbial virulence. Indeed during the infection the pathogens adapt to different tissue-specific environmental factors. The development of in vitro models resembling human tissue physiology might allow the replacement of inaccurate or aberrant animal models. Three-dimensional (3D) cell culture systems are more reliable and more predictive models that can be used for the meaningful dissection of host–pathogen interactions. The lung and gut mucosae often represent the first site of exposure to pathogens and provide a physical barrier against their entry. Within this context, the tracheobronchial and small intestine tract were modelled by tissue engineering approach. The main work was focused on the development and the extensive characterization of a human organotypic airway model, based on a mechanically supported co-culture of normal primary cells. The regained morphological features, the retrieved environmental factors and the presence of specific epithelial subsets resembled the native tissue organization. In addition, the respiratory model enabled the modular insertion of interesting cell types, such as innate immune cells or multipotent stromal cells, showing a functional ability to release pertinent cytokines differentially. Furthermore this model responded imitating known events occurring during the infection by Non-typeable H. influenzae. Epithelial organoid models, mimicking the small intestine tract, were used for a different explorative analysis of tissue-toxicity. Further experiments led to detection of a cell population targeted by C. difficile Toxin A and suggested a role in the impairment of the epithelial homeostasis by the bacterial virulence machinery. The described cell-centered strategy can afford critical insights in the evaluation of the host defence and pathogenic mechanisms. The application of these two models may provide an informing step that more coherently defines relevant molecular interactions happening during the infection.
Resumo:
This thesis aims at investigating a new approach to document analysis based on the idea of structural patterns in XML vocabularies. My work is founded on the belief that authors do naturally converge to a reasonable use of markup languages and that extreme, yet valid instances are rare and limited. Actual documents, therefore, may be used to derive classes of elements (patterns) persisting across documents and distilling the conceptualization of the documents and their components, and may give ground for automatic tools and services that rely on no background information (such as schemas) at all. The central part of my work consists in introducing from the ground up a formal theory of eight structural patterns (with three sub-patterns) that are able to express the logical organization of any XML document, and verifying their identifiability in a number of different vocabularies. This model is characterized by and validated against three main dimensions: terseness (i.e. the ability to represent the structure of a document with a small number of objects and composition rules), coverage (i.e. the ability to capture any possible situation in any document) and expressiveness (i.e. the ability to make explicit the semantics of structures, relations and dependencies). An algorithm for the automatic recognition of structural patterns is then presented, together with an evaluation of the results of a test performed on a set of more than 1100 documents from eight very different vocabularies. This language-independent analysis confirms the ability of patterns to capture and summarize the guidelines used by the authors in their everyday practice. Finally, I present some systems that work directly on the pattern-based representation of documents. The ability of these tools to cover very different situations and contexts confirms the effectiveness of the model.