19 resultados para Spatial Mixture Models


Relevância:

30.00% 30.00%

Publicador:

Resumo:

In recent years, 3D bioprinting has emerged as an innovative and versatile technology able to produce in vitro models that resemble the native spatial organization of organ tissues, by employing or more bioinks composed of various types of cells suspended in hydrogels. Natural and semi-synthetic hydrogels are extensively used for 3D bioprinting models since they can mimic the natural composition of the tissues, they are biocompatible and bioactive with customizable mechanical properties, allowing to support cell growth. The possibility to tailor hydrogels mechanical properties by modifying the chemical structures to obtain photo-crosslinkable materials, while maintaining their biocompatibility and biomimicry, make their use versatile and suitable to simulate a broad spectrum of physiological features. In this PhD Thesis, 3D bioprinted in vitro models with tailored mechanical properties and physiologically-like features were fabricated. AlgMa-based bioinks were employed to produce a living platform with gradient stiffness, with the aim to create an easy to handle and accessible biological tool to evaluate mechanobiology. In addition, GelMa, collagen and IPN of GelMa and collagen were used as bioinks to fabricate a proof-of-concept of 3D intestinal barrier, which include multiple cell components and multi-layered structure. A useful rheological guide to drive users to the selection of the suitable bioinks for 3D bioprinting and to correlate the model’s mechanical stability after crosslinking is proposed. In conclusion, a platform capable to reproduce models with physiological gradient stiffness was developed and the fabrication of 3D bioprinted intestinal models displaying a good hierarchical structure and cells composition was fully reported and successfully achieved. The good biological results obtained demonstrated that 3D bioprinting can be used for the fabrications of 3D models and that the mechanical properties of the external environment plays a key role on the cell pathways, viability and morphology.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Investigating stock identity of marine species in a multidisciplinary holistic approach can reveal patterns of complex spatial population structure and signatures of potential local adaptation. The population structure of common sole (Solea solea) in the Mediterranean Sea was delineated using genomic and otolith data, including single nucleotide polymorphisms (SNPs) markers and otolith data. SNPs were correlated with environmental and spatial variables to evaluate the impact of these features on the actual genetic population structure. Integrated holistic approach was applied to combine the tracers with different spatio-temporal scales. SNPs data was also used to illustrate the population structure of European hake (Merluccius merluccius) within the Alboran Sea, extending into the neighboring Mediterranean Sea and Atlantic Ocean. The aim was to identify patterns of neutral and potential adaptive genetic variation by applying seascape genomic framework. Results from both genetic and otolith data suggested significant divergence among putative populations of common sole, confirming a clear separation between Western, Adriatic Sea and Eastern Mediterranean Sea. Evidence of fine-scale population structure in the Western Mediterranean Sea was observed at outlier loci level and in the Adriatic. Our study not only indicates that separation among Mediterranean sole population is led primarily by neutral processes, but it also suggests the presence of local adaptation influenced by environmental and spatial factors. The holistic approach by considering the spatio-temporal scales of variation confirmed that the same pattern of separation between these geographical sites is currently occurring and has occurred for many generations. Results showed the occurrence of population structure in Merluccius merluccius by detecting westward–eastward differentiation among populations and distinct subgroups at a fine geographical scale using outlier SNPs. These results enhance the knowledge of the population structure of commercially relevant species to support the application of spatial stock assessment models, including a redefinition of fishery management units.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The main topic of this thesis is confounding in linear regression models. It arises when a relationship between an observed process, the covariate, and an outcome process, the response, is influenced by an unmeasured process, the confounder, associated with both. Consequently, the estimators for the regression coefficients of the measured covariates might be severely biased, less efficient and characterized by misleading interpretations. Confounding is an issue when the primary target of the work is the estimation of the regression parameters. The central point of the dissertation is the evaluation of the sampling properties of parameter estimators. This work aims to extend the spatial confounding framework to general structured settings and to understand the behaviour of confounding as a function of the data generating process structure parameters in several scenarios focusing on the joint covariate-confounder structure. In line with the spatial statistics literature, our purpose is to quantify the sampling properties of the regression coefficient estimators and, in turn, to identify the most prominent quantities depending on the generative mechanism impacting confounding. Once the sampling properties of the estimator conditionally on the covariate process are derived as ratios of dependent quadratic forms in Gaussian random variables, we provide an analytic expression of the marginal sampling properties of the estimator using Carlson’s R function. Additionally, we propose a representative quantity for the magnitude of confounding as a proxy of the bias, its first-order Laplace approximation. To conclude, we work under several frameworks considering spatial and temporal data with specific assumptions regarding the covariance and cross-covariance functions used to generate the processes involved. This study allows us to claim that the variability of the confounder-covariate interaction and of the covariate plays the most relevant role in determining the principal marker of the magnitude of confounding.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Long-term monitoring of acoustical environments is gaining popularity thanks to the relevant amount of scientific and engineering insights that it provides. The increasing interest is due to the constant growth of storage capacity and computational power to process large amounts of data. In this perspective, machine learning (ML) provides a broad family of data-driven statistical techniques to deal with large databases. Nowadays, the conventional praxis of sound level meter measurements limits the global description of a sound scene to an energetic point of view. The equivalent continuous level Leq represents the main metric to define an acoustic environment, indeed. Finer analyses involve the use of statistical levels. However, acoustic percentiles are based on temporal assumptions, which are not always reliable. A statistical approach, based on the study of the occurrences of sound pressure levels, would bring a different perspective to the analysis of long-term monitoring. Depicting a sound scene through the most probable sound pressure level, rather than portions of energy, brought more specific information about the activity carried out during the measurements. The statistical mode of the occurrences can capture typical behaviors of specific kinds of sound sources. The present work aims to propose an ML-based method to identify, separate and measure coexisting sound sources in real-world scenarios. It is based on long-term monitoring and is addressed to acousticians focused on the analysis of environmental noise in manifold contexts. The presented method is based on clustering analysis. Two algorithms, Gaussian Mixture Model and K-means clustering, represent the main core of a process to investigate different active spaces monitored through sound level meters. The procedure has been applied in two different contexts: university lecture halls and offices. The proposed method shows robust and reliable results in describing the acoustic scenario and it could represent an important analytical tool for acousticians.