20 resultados para Signal transducers and activators of transcription (STAts)
Resumo:
This thesis presents several data processing and compression techniques capable of addressing the strict requirements of wireless sensor networks. After introducing a general overview of sensor networks, the energy problem is introduced, dividing the different energy reduction approaches according to the different subsystem they try to optimize. To manage the complexity brought by these techniques, a quick overview of the most common middlewares for WSNs is given, describing in detail SPINE2, a framework for data processing in the node environment. The focus is then shifted on the in-network aggregation techniques, used to reduce data sent by the network nodes trying to prolong the network lifetime as long as possible. Among the several techniques, the most promising approach is the Compressive Sensing (CS). To investigate this technique, a practical implementation of the algorithm is compared against a simpler aggregation scheme, deriving a mixed algorithm able to successfully reduce the power consumption. The analysis moves from compression implemented on single nodes to CS for signal ensembles, trying to exploit the correlations among sensors and nodes to improve compression and reconstruction quality. The two main techniques for signal ensembles, Distributed CS (DCS) and Kronecker CS (KCS), are introduced and compared against a common set of data gathered by real deployments. The best trade-off between reconstruction quality and power consumption is then investigated. The usage of CS is also addressed when the signal of interest is sampled at a Sub-Nyquist rate, evaluating the reconstruction performance. Finally the group sparsity CS (GS-CS) is compared to another well-known technique for reconstruction of signals from an highly sub-sampled version. These two frameworks are compared again against a real data-set and an insightful analysis of the trade-off between reconstruction quality and lifetime is given.
Resumo:
In this thesis we have developed solutions to common issues regarding widefield microscopes, facing the problem of the intensity inhomogeneity of an image and dealing with two strong limitations: the impossibility of acquiring either high detailed images representative of whole samples or deep 3D objects. First, we cope with the problem of the non-uniform distribution of the light signal inside a single image, named vignetting. In particular we proposed, for both light and fluorescent microscopy, non-parametric multi-image based methods, where the vignetting function is estimated directly from the sample without requiring any prior information. After getting flat-field corrected images, we studied how to fix the problem related to the limitation of the field of view of the camera, so to be able to acquire large areas at high magnification. To this purpose, we developed mosaicing techniques capable to work on-line. Starting from a set of overlapping images manually acquired, we validated a fast registration approach to accurately stitch together the images. Finally, we worked to virtually extend the field of view of the camera in the third dimension, with the purpose of reconstructing a single image completely in focus, stemming from objects having a relevant depth or being displaced in different focus planes. After studying the existing approaches for extending the depth of focus of the microscope, we proposed a general method that does not require any prior information. In order to compare the outcome of existing methods, different standard metrics are commonly used in literature. However, no metric is available to compare different methods in real cases. First, we validated a metric able to rank the methods as the Universal Quality Index does, but without needing any reference ground truth. Second, we proved that the approach we developed performs better in both synthetic and real cases.
Resumo:
The present thesis focuses on elastic waves behaviour in ordinary structures as well as in acousto-elastic metamaterials via numerical and experimental applications. After a brief introduction on the behaviour of elastic guided waves in the framework of non-destructive evaluation (NDE) and structural health monitoring (SHM) and on the study of elastic waves propagation in acousto-elastic metamaterials, dispersion curves for thin-walled beams and arbitrary cross-section waveguides are extracted via Semi-Analytical Finite Element (SAFE) methods. Thus, a novel strategy tackling signal dispersion to locate defects in irregular waveguides is proposed and numerically validated. Finally, a time-reversal and laser-vibrometry based procedure for impact location is numerically and experimentally tested. In the second part, an introduction and a brief review of the basic definitions necessary to describe acousto-elastic metamaterials is provided. A numerical approach to extract dispersion properties in such structures is highlighted. Afterwards, solid-solid and solid-fluid phononic systems are discussed via numerical applications. In particular, band structures and transmission power spectra are predicted for 1P-2D, 2P-2D and 2P-3D phononic systems. In addition, attenuation bands in the ultrasonic as well as in the sonic frequency regimes are experimentally investigated. In the experimental validation, PZTs in a pitch-catch configuration and laser vibrometric measurements are performed on a PVC phononic plate in the ultrasonic frequency range and sound insulation index is computed for a 2P-3D phononic barrier in the sonic frequency range. In both cases the numerical-experimental results comparison confirms the existence of the numerical predicted band-gaps. Finally, the feasibility of an innovative passive isolation strategy based on giant elastic metamaterials is numerically proved to be practical for civil structures. In particular, attenuation of seismic waves is demonstrated via finite elements analyses. Further, a parametric study shows that depending on the soil properties, such an earthquake-proof barrier could lead to significant reduction of the superstructure displacement.
Resumo:
Aberrant expression of ETS transcription factors, including FLI1 and ERG, due to chromosomal translocations has been described as a driver event in initiation and progression of different tumors. In this study, the impact of prostate cancer (PCa) fusion gene TMPRSS2-ERG was evaluated on components of the insulin-like growth factor (IGF) system and the CD99 molecule, two well documented targets of EWS-FLI1, the hallmark of Ewing sarcoma (ES). The aim of this study was to identify common or distinctive ETS-related mechanisms which could be exploited at biological and clinical level. The results demonstrate that IGF-1R represents a common target of ETS rearrangements as ERG and FLI1 bind IGF-1R gene promoter and their modulation causes alteration in IGF-1R protein levels. At clinical level, this mechanism provides basis for a more rationale use of anti-IGF-1R inhibitors as PCa cells expressing the fusion gene better respond to anti-IGF-1R agents. EWS-FLI1/IGF-1R axis provides rationale for combination of anti-IGF-1R agents with trabectedin, an alkylator agent causing enhanced EWS-FLI1 occupancy on the IGF-1R promoter. TMPRSS2-ERG also influences prognosis relevance of IGF system as high IGF-1R correlates with a better biochemical progression free survival (BPFS) in PCa patients negative for the fusion gene while marginal or no association was found in the total cases or TMPRSS2-ERG-positive cases, respectively. This study indicates CD99 is differentially regulated between ETS-related tumors as CD99 is not a target of ERG. In PCa, CD99 did not show differential expression between TMPRSS2-ERG-positive and –negative cells. A direct correlation was anyway found between ERG and CD99 proteins both in vitro and in patients putatively suggesting that ERG target genes comprehend regulators of CD99. Despite a little trend suggesting a correlation between CD99 expression and a better BPFS, no clinical relevance for CD99 was found in the field of prognostic biomarkers.
Resumo:
This thesis regards the study and the development of new cognitive assessment and rehabilitation techniques of subjects with traumatic brain injury (TBI). In particular, this thesis i) provides an overview about the state of art of this new assessment and rehabilitation technologies, ii) suggests new methods for the assessment and rehabilitation and iii) contributes to the explanation of the neurophysiological mechanism that is involved in a rehabilitation treatment. Some chapters provide useful information to contextualize TBI and its outcome; they describe the methods used for its assessment/rehabilitation. The other chapters illustrate a series of experimental studies conducted in healthy subjects and TBI patients that suggest new approaches to assessment and rehabilitation. The new proposed approaches have in common the use of electroencefalografy (EEG). EEG was used in all the experimental studies with a different purpose, such as diagnostic tool, signal to command a BCI-system, outcome measure to evaluate the effects of a treatment, etc. The main achieved results are about: i) the study and the development of a system for the communication with patients with disorders of consciousness. It was possible to identify a paradigm of reliable activation during two imagery task using EEG signal or EEG and NIRS signal; ii) the study of the effects of a neuromodulation technique (tDCS) on EEG pattern. This topic is of great importance and interest. The emerged founding showed that the tDCS can manipulate the cortical network activity and through the research of optimal stimulation parameters, it is possible move the working point of a neural network and bring it in a condition of maximum learning. In this way could be possible improved the performance of a BCI system or to improve the efficacy of a rehabilitation treatment, like neurofeedback.