17 resultados para Semi-infinite and infinite programming
Resumo:
Biological data are inherently interconnected: protein sequences are connected to their annotations, the annotations are structured into ontologies, and so on. While protein-protein interactions are already represented by graphs, in this work I am presenting how a graph structure can be used to enrich the annotation of protein sequences thanks to algorithms that analyze the graph topology. We also describe a novel solution to restrict the data generation needed for building such a graph, thanks to constraints on the data and dynamic programming. The proposed algorithm ideally improves the generation time by a factor of 5. The graph representation is then exploited to build a comprehensive database, thanks to the rising technology of graph databases. While graph databases are widely used for other kind of data, from Twitter tweets to recommendation systems, their application to bioinformatics is new. A graph database is proposed, with a structure that can be easily expanded and queried.
Resumo:
Latency can be defined as the sum of the arrival times at the customers. Minimum latency problems are specially relevant in applications related to humanitarian logistics. This thesis presents algorithms for solving a family of vehicle routing problems with minimum latency. First the latency location routing problem (LLRP) is considered. It consists of determining the subset of depots to be opened, and the routes that a set of homogeneous capacitated vehicles must perform in order to visit a set of customers such that the sum of the demands of the customers assigned to each vehicle does not exceed the capacity of the vehicle. For solving this problem three metaheuristic algorithms combining simulated annealing and variable neighborhood descent, and an iterated local search (ILS) algorithm, are proposed. Furthermore, the multi-depot cumulative capacitated vehicle routing problem (MDCCVRP) and the multi-depot k-traveling repairman problem (MDk-TRP) are solved with the proposed ILS algorithm. The MDCCVRP is a special case of the LLRP in which all the depots can be opened, and the MDk-TRP is a special case of the MDCCVRP in which the capacity constraints are relaxed. Finally, a LLRP with stochastic travel times is studied. A two-stage stochastic programming model and a variable neighborhood search algorithm are proposed for solving the problem. Furthermore a sampling method is developed for tackling instances with an infinite number of scenarios. Extensive computational experiments show that the proposed methods are effective for solving the problems under study.