32 resultados para Self-organisation, Nature-inspired coordination, Bio pattern, Biochemical tuple spaces
Resumo:
A prevalent claim is that we are in knowledge economy. When we talk about knowledge economy, we generally mean the concept of “Knowledge-based economy” indicating the use of knowledge and technologies to produce economic benefits. Hence knowledge is both tool and raw material (people’s skill) for producing some kind of product or service. In this kind of environment economic organization is undergoing several changes. For example authority relations are less important, legal and ownership-based definitions of the boundaries of the firm are becoming irrelevant and there are only few constraints on the set of coordination mechanisms. Hence what characterises a knowledge economy is the growing importance of human capital in productive processes (Foss, 2005) and the increasing knowledge intensity of jobs (Hodgson, 1999). Economic processes are also highly intertwined with social processes: they are likely to be informal and reciprocal rather than formal and negotiated. Another important point is also the problem of the division of labor: as economic activity becomes mainly intellectual and requires the integration of specific and idiosyncratic skills, the task of dividing the job and assigning it to the most appropriate individuals becomes arduous, a “supervisory problem” (Hogdson, 1999) emerges and traditional hierarchical control may result increasingly ineffective. Not only specificity of know how makes it awkward to monitor the execution of tasks, more importantly, top-down integration of skills may be difficult because ‘the nominal supervisors will not know the best way of doing the job – or even the precise purpose of the specialist job itself – and the worker will know better’ (Hogdson,1999). We, therefore, expect that the organization of the economic activity of specialists should be, at least partially, self-organized. The aim of this thesis is to bridge studies from computer science and in particular from Peer-to-Peer Networks (P2P) to organization theories. We think that the P2P paradigm well fits with organization problems related to all those situation in which a central authority is not possible. We believe that P2P Networks show a number of characteristics similar to firms working in a knowledge-based economy and hence that the methodology used for studying P2P Networks can be applied to organization studies. Three are the main characteristics we think P2P have in common with firms involved in knowledge economy: - Decentralization: in a pure P2P system every peer is an equal participant, there is no central authority governing the actions of the single peers; - Cost of ownership: P2P computing implies shared ownership reducing the cost of owing the systems and the content, and the cost of maintaining them; - Self-Organization: it refers to the process in a system leading to the emergence of global order within the system without the presence of another system dictating this order. These characteristics are present also in the kind of firm that we try to address and that’ why we have shifted the techniques we adopted for studies in computer science (Marcozzi et al., 2005; Hales et al., 2007 [39]) to management science.
Resumo:
The rational construction of the house. The writings and projects of Giuseppe Pagano Description, themes and research objectives The research aims at analysing the architecture of Giuseppe Pagano, which focuses on the theme of dwelling, through the reading of 3 of his house projects. On the one hand, these projects represent “minor” works not thoroughly known by Pagano’s contemporary critics; on the other they emphasise a particular methodological approach, which serves the author to explore a theme closely linked to his theoretical thought. The house project is a key to Pagano’s research, given its ties to the socio-cultural and political conditions in which the architect was working, so that it becomes a mirror of one of his specific and theoretical path, always in a state of becoming. Pagano understands architecture as a “servant of the human being”, subject to a “utilitarian slavery” since it is a clear, essential and “modest” answer to specific human needs, free from aprioristic aesthetic and formal choices. It is a rational architecture in sensu stricto; it constitutes a perfect synthesis between cause and effect and between function and form. The house needs to accommodate these principles because it is closely intertwined with human needs and intimately linked to a specific place, climatic conditions and technical and economical possibilities. Besides, differently from his public and common masterpieces such as the Palazzo Gualino, the Istituto di Fisica and the Università Commerciale Bocconi, the house projects are representative of a precise project will, which is expressed in a more authentic way, partially freed from political influences and dogmatic preoccupations and, therefore, far from the attempt to research a specific expressive language. I believe that the house project better represents that “ingenuity”, freshness and “sincerity” that Pagano identifies with the minor architecture, thereby revealing a more authentic expression of his understanding of a project. Therefore, the thesis, by tracing the theoretical research of Pagano through the analysis of some of his designed and built works, attempts to identify a specific methodological approach to Pagano’s project, which, developed through time, achieves a certain clarity in the 1930s. In fact, this methodological approach becomes more evident in his last projects, mainly regarding the house and the urban space. These reflect the attempt to respond to the new social needs and, at the same time, they also are an expression of a freer idea of built architecture, closely linked with the place and with the human being who dwells it. The three chosen projects (Villa Colli, La Casa a struttura d’acciaio and Villa Caraccio) make Pagano facing different places, different customers and different economic and technical conditions, which, given the author’s biography, correspond to important historical and political conditions. This is the reason why the projects become apparently distant works, both linguistically and conceptually, to the point that one can define them as ”eclectic”. However, I argue that this eclecticism is actually an added value to the architectural work of Pagano, steaming from the use of a method which, having as a basis the postulate of a rational architecture as essence and logic of building, finds specific variations depending on the multiple variables to be addressed by the project. This is the methodological heritage that Pagano learns from the tradition, especially that of the rural residential architecture, defined by Pagano as a “dictionary of the building logic of man”, as an “a-stylistic background”. For Pagano this traditional architecture is a clear expression of the relationships between a theme and its development, an architectural “fact” that is resolved with purely technical and utilitarian aims and with a spontaneous development far from any aprioristic theoretical principle. Architecture, therefore, cannot be an invention for Pagano and the personal contribution of each architect has to consider his/her close relationship with the specific historical context, place and new building methods. These are basic principles in the methodological approach that drives a great deal of his research and that also permits his thought to be modern. I argue that both ongoing and new collaborations with younger protagonists of the culture and architecture of the period are significant for the development of his methodology. These encounters represent the will to spread his own understanding of the “new architecture” as well as a way of self-renewal by confronting the self with new themes and realities and by learning from his collaborators. Thesis’ outline The thesis is divided in two principal parts, each articulated in four chapters attempting to offer a new reading of the theory and work of Pagano by emphasising the central themes of the research. The first chapter is an introduction to the thesis and to the theme of the rational house, as understood and developed in its typological and technical aspects by Pagano and by other protagonists of the Italian rationalism of the 1930s. Here the attention is on two different aspects defining, according to Pagano, the house project: on the one hand, the typological renewal, aimed at defining a “standard form” as a clear and essential answer to certain needs and variables of the project leading to different formal expressions. On the other, it focuses on the building, understood as a technique to “produce” architecture, where new technologies and new materials are not merely tools but also essential elements of the architectural work. In this way the villa becomes different from the theme of the common house or from that of the minimalist house, by using rules in the choice of material and in the techniques that are every time different depending on the theme under exploration and on the contingency of place. It is also visible the rigorous rationalism that distinguishes the author's appropriation of certain themes of rural architecture. The pages of “Casabella” and the events of the contemporary Triennali form the preliminary material for the writing of this chapter given that they are primary sources to individuate projects and writings produced by Pagano and contemporary architects on this theme. These writings and projects, when compared, reconstruct the evolution of the idea of the rational house and, specifically, of the personal research of Pagano. The second part regards the reading of three of Pagano’s projects of houses as a built verification of his theories. This section constitutes the central part of the thesis since it is aimed at detecting a specific methodological approach showing a theoretical and ideological evolution expressed in the vast edited literature. The three projects that have been chosen explore the theme of the house, looking at various research themes that the author proposes and that find continuity in the affirmation of a specific rationalism, focussed on concepts such as essentiality, utility, functionality and building honesty. These concepts guide the thought and the activities of Pagano, also reflecting a social and cultural period. The projects span from the theme of the villa moderna, Villa Colli, which, inspired by the architecture of North Europe, anticipates a specific rationalism of Pagano based on rigour, simplicity and essentiality, to the theme of the common house, Casa a struttura d’acciaio, la casa del domani, which ponders on the definition of new living spaces and, moreover, on new concepts of standardisation, economical efficiency and new materials responding to the changing needs of the modern society. Finally, the third project returns to the theme of the, Villa Caraccio, revisiting it with new perspectives. These perspectives find in the solution of the open plant, in the openness to nature and landscape and in the revisiting of materials and local building systems that idea of the freed house, which express clearly a new theoretical thought. Methodology It needs to be noted that due to the lack of an official Archive of Pagano’s work, the analysis of his work has been difficult and this explains the necessity to read the articles and the drawings published in the pages of «Casabella» and «Domus». As for the projects of Villa Colli and Casa a struttura d’acciaio, parts of the original drawings have been consulted. These drawings are not published and are kept in private archives of the collaborators of Pagano. The consultation of these documents has permitted the analysis of the cited works, which have been subject to a more complete reading following the different proposed solutions, which have permitted to understand the project path. The projects are analysed thought the method of comparison and critical reading which, specifically, means graphical elaborations and analytical schemes, mostly reconstructed on the basis of original projects but, where possible, also on a photographic investigation. The focus is on the project theme which, beginning with a specific living (dwelling) typology, finds variations because of the historico-political context in which Pagano is embedded and which partially shapes his research and theoretical thought, then translated in the built work. The analysis of the work follows, beginning, where possible, from a reconstruction of the evolution of the project as elaborated on the basis of the original documents and ending on an analysis of the constructive principles and composition. This second phase employs a methodology proposed by Pagano in his article Piante di ville, which, as expected, focuses on the plant as essential tool to identify the “true practical and poetic qualities of the construction”(Pagano, «Costruzioni-Casabella», 1940, p. 2). The reading of the project is integrated with the constructive analyses related to the technical aspects of the house which, in the case of Casa a struttura d’acciaio, play an important role in the project, while in Villa Colli and in Villa Caraccio are principally linked to the choice of materials for the construction of the different architectural elements. These are nonetheless key factors in the composition of the work. Future work could extend this reading to other house projects to deepen the research that could be completed with the consultation of Archival materials, which are missing at present. Finally, in the appendix I present a critical selection of the Pagano’s writings, which recall the themes discussed and embodied by the three projects. The texts have been selected among the articles published in Casabella and in other journals, completing the reading of the project work which cannot be detached from his theoretical thought. Moving from theory to project, we follow a path that brings us to define and deepen the central theme of the thesis: rational building as the principal feature of the architectural research of Pagano, which is paraphrased in multiple ways in his designed and built works.
Resumo:
The application of Concurrency Theory to Systems Biology is in its earliest stage of progress. The metaphor of cells as computing systems by Regev and Shapiro opened the employment of concurrent languages for the modelling of biological systems. Their peculiar characteristics led to the design of many bio-inspired formalisms which achieve higher faithfulness and specificity. In this thesis we present pi@, an extremely simple and conservative extension of the pi-calculus representing a keystone in this respect, thanks to its expressiveness capabilities. The pi@ calculus is obtained by the addition of polyadic synchronisation and priority to the pi-calculus, in order to achieve compartment semantics and atomicity of complex operations respectively. In its direct application to biological modelling, the stochastic variant of the calculus, Spi@, is shown able to model consistently several phenomena such as formation of molecular complexes, hierarchical subdivision of the system into compartments, inter-compartment reactions, dynamic reorganisation of compartment structure consistent with volume variation. The pivotal role of pi@ is evidenced by its capability of encoding in a compositional way several bio-inspired formalisms, so that it represents the optimal core of a framework for the analysis and implementation of bio-inspired languages. In this respect, the encodings of BioAmbients, Brane Calculi and a variant of P Systems in pi@ are formalised. The conciseness of their translation in pi@ allows their indirect comparison by means of their encodings. Furthermore it provides a ready-to-run implementation of minimal effort whose correctness is granted by the correctness of the respective encoding functions. Further important results of general validity are stated on the expressive power of priority. Several impossibility results are described, which clearly state the superior expressiveness of prioritised languages and the problems arising in the attempt of providing their parallel implementation. To this aim, a new setting in distributed computing (the last man standing problem) is singled out and exploited to prove the impossibility of providing a purely parallel implementation of priority by means of point-to-point or broadcast communication.
Resumo:
Selective oxidation is one of the simplest functionalization methods and essentially all monomers used in manufacturing artificial fibers and plastics are obtained by catalytic oxidation processes. Formally, oxidation is considered as an increase in the oxidation number of the carbon atoms, then reactions such as dehydrogenation, ammoxidation, cyclization or chlorination are all oxidation reactions. In this field, most of processes for the synthesis of important chemicals used vanadium oxide-based catalysts. These catalytic systems are used either in the form of multicomponent mixed oxides and oxysalts, e.g., in the oxidation of n-butane (V/P/O) and of benzene (supported V/Mo/O) to maleic anhydride, or in the form of supported metal oxide, e.g., in the manufacture of phthalic anhydride by o-xylene oxidation, of sulphuric acid by oxidation of SO2, in the reduction of NOx with ammonia and in the ammoxidation of alkyl aromatics. In addition, supported vanadia catalysts have also been investigated for the oxidative dehydrogenation of alkanes to olefins , oxidation of pentane to maleic anhydride and the selective oxidation of methanol to formaldehyde or methyl formate [1]. During my PhD I focused my work on two gas phase selective oxidation reactions. The work was done at the Department of Industrial Chemistry and Materials (University of Bologna) in collaboration with Polynt SpA. Polynt is a leader company in the development, production and marketing of catalysts for gas-phase oxidation. In particular, I studied the catalytic system for n-butane oxidation to maleic anhydride (fluid bed technology) and for o-xylene oxidation to phthalic anhydride. Both reactions are catalyzed by systems based on vanadium, but catalysts are completely different. Part A is dedicated to the study of V/P/O catalyst for n-butane selective oxidation, while in the Part B the results of an investigation on TiO2-supported V2O5, catalyst for o-xylene oxidation are showed. In Part A, a general introduction about the importance of maleic anhydride, its uses, the industrial processes and the catalytic system are reported. The reaction is the only industrial direct oxidation of paraffins to a chemical intermediate. It is produced by n-butane oxidation either using fixed bed and fluid bed technology; in both cases the catalyst is the vanadyl pyrophosphate (VPP). Notwithstanding the good performances, the yield value didn’t exceed 60% and the system is continuously studied to improve activity and selectivity. The main open problem is the understanding of the real active phase working under reaction conditions. Several articles deal with the role of different crystalline and/or amorphous vanadium/phosphorous (VPO) compounds. In all cases, bulk VPP is assumed to constitute the core of the active phase, while two different hypotheses have been formulated concerning the catalytic surface. In one case the development of surface amorphous layers that play a direct role in the reaction is described, in the second case specific planes of crystalline VPP are assumed to contribute to the reaction pattern, and the redox process occurs reversibly between VPP and VOPO4. Both hypotheses are supported also by in-situ characterization techniques, but the experiments were performed with different catalysts and probably under slightly different working conditions. Due to complexity of the system, these differences could be the cause of the contradictions present in literature. Supposing that a key role could be played by P/V ratio, I prepared, characterized and tested two samples with different P/V ratio. Transformation occurring on catalytic surfaces under different conditions of temperature and gas-phase composition were studied by means of in-situ Raman spectroscopy, trying to investigate the changes that VPP undergoes during reaction. The goal is to understand which kind of compound constituting the catalyst surface is the most active and selective for butane oxidation reaction, and also which features the catalyst should possess to ensure the development of this surface (e.g. catalyst composition). On the basis of results from this study, it could be possible to project a new catalyst more active and selective with respect to the present ones. In fact, the second topic investigated is the possibility to reproduce the surface active layer of VPP onto a support. In general, supportation is a way to improve mechanical features of the catalysts and to overcome problems such as possible development of local hot spot temperatures, which could cause a decrease of selectivity at high conversion, and high costs of catalyst. In literature it is possible to find different works dealing with the development of supported catalysts, but in general intrinsic characteristics of VPP are worsened due to the chemical interaction between active phase and support. Moreover all these works deal with the supportation of VPP; on the contrary, my work is an attempt to build-up a V/P/O active layer on the surface of a zirconia support by thermal treatment of a precursor obtained by impregnation of a V5+ salt and of H3PO4. In-situ Raman analysis during the thermal treatment, as well as reactivity tests are used to investigate the parameters that may influence the generation of the active phase. Part B is devoted to the study of o-xylene oxidation of phthalic anhydride; industrially, the reaction is carried out in gas-phase using as catalysts a supported system formed by V2O5 on TiO2. The V/Ti/O system is quite complex; different vanadium species could be present on the titania surface, as a function of the vanadium content and of the titania surface area: (i) V species which is chemically bound to the support via oxo bridges (isolated V in octahedral or tetrahedral coordination, depending on the hydration degree), (ii) a polymeric species spread over titania, and (iii) bulk vanadium oxide, either amorphous or crystalline. The different species could have different catalytic properties therefore changing the relative amount of V species can be a way to optimize the catalytic performances of the system. For this reason, samples containing increasing amount of vanadium were prepared and tested in the oxidation of o-xylene, with the aim of find a correlations between V/Ti/O catalytic activity and the amount of the different vanadium species. The second part deals with the role of a gas-phase promoter. Catalytic surface can change under working conditions; the high temperatures and a different gas-phase composition could have an effect also on the formation of different V species. Furthermore, in the industrial practice, the vanadium oxide-based catalysts need the addition of gas-phase promoters in the feed stream, that although do not have a direct role in the reaction stoichiometry, when present leads to considerable improvement of catalytic performance. Starting point of my investigation is the possibility that steam, a component always present in oxidation reactions environment, could cause changes in the nature of catalytic surface under reaction conditions. For this reason, the dynamic phenomena occurring at the surface of a 7wt% V2O5 on TiO2 catalyst in the presence of steam is investigated by means of Raman spectroscopy. Moreover a correlation between the amount of the different vanadium species and catalytic performances have been searched. Finally, the role of dopants has been studied. The industrial V/Ti/O system contains several dopants; the nature and the relative amount of promoters may vary depending on catalyst supplier and on the technology employed for the process, either a single-bed or a multi-layer catalytic fixed-bed. Promoters have a quite remarkable effect on both activity and selectivity to phthalic anhydride. Their role is crucial, and the proper control of the relative amount of each component is fundamental for the process performance. Furthermore, it can not be excluded that the same promoter may play different role depending on reaction conditions (T, composition of gas phase..). The reaction network of phthalic anhydride formation is very complex and includes several parallel and consecutive reactions; for this reason a proper understanding of the role of each dopant cannot be separated from the analysis of the reaction scheme. One of the most important promoters at industrial level, which is always present in the catalytic formulations is Cs. It is known that Cs plays an important role on selectivity to phthalic anhydride, but the reasons of this phenomenon are not really clear. Therefore the effect of Cs on the reaction scheme has been investigated at two different temperature with the aim of evidencing in which step of the reaction network this promoter plays its role.
Resumo:
Alzheimer's disease (AD) and cancer represent two of the main causes of death worldwide. They are complex multifactorial diseases and several biochemical targets have been recognized to play a fundamental role in their development. Basing on their complex nature, a promising therapeutical approach could be represented by the so-called "Multi-Target-Directed Ligand" approach. This new strategy is based on the assumption that a single molecule could hit several targets responsible for the onset and/or progression of the pathology. In particular in AD, most currently prescribed drugs aim to increase the level of acetylcholine in the brain by inhibiting the enzyme acetylcholinesterase (AChE). However, clinical experience shows that AChE inhibition is a palliative treatment, and the simple modulation of a single target does not address AD aetiology. Research into newer and more potent anti-AD agents is thus focused on compounds whose properties go beyond AChE inhibition (such as inhibition of the enzyme β-secretase and inhibition of the aggregation of beta-amyloid). Therefore, the MTDL strategy seems a more appropriate approach for addressing the complexity of AD and may provide new drugs for tackling its multifactorial nature. In this thesis, it is described the design of new MTDLs able to tackle the multifactorial nature of AD. Such new MTDLs designed are less flexible analogues of Caproctamine, one of the first MTDL owing biological properties useful for the AD treatment. These new compounds are able to inhibit the enzymes AChE, beta-secretase and to inhibit both AChE-induced and self-induced beta-amyloid aggregation. In particular, the most potent compound of the series is able to inhibit AChE in subnanomolar range, to inhibit β-secretase in micromolar concentration and to inhibit both AChE-induced and self-induced beta-amyloid aggregation in micromolar concentration. Cancer, as AD, is a very complex pathology and many different therapeutical approaches are currently use for the treatment of such pathology. However, due to its multifactorial nature the MTDL approach could be, in principle, apply also to this pathology. Aim of this thesis has been the development of new molecules owing different structural motifs able to simultaneously interact with some of the multitude of targets responsible for the pathology. The designed compounds displayed cytotoxic activity in different cancer cell lines. In particular, the most potent compounds of the series have been further evaluated and they were able to bind DNA resulting 100-fold more potent than the reference compound Mitonafide. Furthermore, these compounds were able to trigger apoptosis through caspases activation and to inhibit PIN1 (preliminary result). This last protein is a very promising target because it is overexpressed in many human cancers, it functions as critical catalyst for multiple oncogenic pathways and in several cancer cell lines depletion of PIN1 determines arrest of mitosis followed by apoptosis induction. In conclusion, this study may represent a promising starting pint for the development of new MTDLs hopefully useful for cancer and AD treatment.
Resumo:
This PhD thesis discusses the rationale for design and use of synthetic oligosaccharides for the development of glycoconjugate vaccines and the role of physicochemical methods in the characterization of these vaccines. The study concerns two infectious diseases that represent a serious problem for the national healthcare programs: human immunodeficiency virus (HIV) and Group A Streptococcus (GAS) infections. Both pathogens possess distinctive carbohydrate structures that have been described as suitable targets for the vaccine design. The Group A Streptococcus cell membrane polysaccharide (GAS-PS) is an attractive vaccine antigen candidate based on its conserved, constant expression pattern and the ability to confer immunoprotection in a relevant mouse model. Analysis of the immunogenic response within at-risk populations suggests an inverse correlation between high anti-GAS-PS antibody titres and GAS infection cases. Recent studies show that a chemically synthesized core polysaccharide-based antigen may represent an antigenic structural determinant of the large polysaccharide. Based on GAS-PS structural analysis, the study evaluates the potential to exploit a synthetic design approach to GAS vaccine development and compares the efficiency of synthetic antigens with the long isolated GAS polysaccharide. Synthetic GAS-PS structural analogues were specifically designed and generated to explore the impact of antigen length and terminal residue composition. For the HIV-1 glycoantigens, the dense glycan shield on the surface of the envelope protein gp120 was chosen as a target. This shield masks conserved protein epitopes and facilitates virus spread via binding to glycan receptors on susceptible host cells. The broadly neutralizing monoclonal antibody 2G12 binds a cluster of high-mannose oligosaccharides on the gp120 subunit of HIV-1 Env protein. This oligomannose epitope has been a subject to the synthetic vaccine development. The cluster nature of the 2G12 epitope suggested that multivalent antigen presentation was important to develop a carbohydrate based vaccine candidate. I describe the development of neoglycoconjugates displaying clustered HIV-1 related oligomannose carbohydrates and their immunogenic properties.
Resumo:
A very recent and exciting new area of research is the application of Concurrency Theory tools to formalize and analyze biological systems and one of the most promising approach comes from the process algebras (process calculi). A process calculus is a formal language that allows to describe concurrent systems and comes with well-established techniques for quantitative and qualitative analysis. Biological systems can be regarded as concurrent systems and therefore modeled by means of process calculi. In this thesis we focus on the process calculi approach to the modeling of biological systems and investigate, mostly from a theoretical point of view, several promising bio-inspired formalisms: Brane Calculi and k-calculus family. We provide several expressiveness results mostly by means of comparisons between calculi. We provide a lower bound to the computational power of the non Turing complete MDB Brane Calculi by showing an encoding of a simple P-System into MDB. We address the issue of local implementation within the k-calculus family: whether n-way rewrites can be simulated by binary interactions only. A solution introducing divergence is provided and we prove a deterministic solution preserving the termination property is not possible. We use the symmetric leader election problem to test synchronization capabilities within the k-calculus family. Several fragments of the original k-calculus are considered and we prove an impossibility result about encoding n-way synchronization into (n-1)-way synchronization. A similar impossibility result is obtained in a pure computer science context. We introduce CCSn, an extension of CCS with multiple input prefixes and show, using the dining philosophers problem, that there is no reasonable encoding of CCS(n+1) into CCSn.
Resumo:
Visual search and oculomotor behaviour are believed to be very relevant for athlete performance, especially for sports requiring refined visuo-motor coordination skills. Modern coaches believe that a correct visuo-motor strategy may be part of advanced training programs. In this thesis two experiments are reported in which gaze behaviour of expert and novice athletes were investigated while they were doing a real sport specific task. The experiments concern two different sports: judo and soccer. In each experiment, number of fixations, fixation locations and mean fixation duration (ms) were considered. An observational analysis was done at the end of the paper to see perceptual differences between near and far space. Purpose: The aim of the judo study was to delineate differences in gaze behaviour characteristics between a population of athletes and one of non athletes. Aspects specifically investigated were: search rate, search order and viewing time across different conditions in a real-world task. The second study was aimed at identifying gaze behaviour in varsity soccer goalkeepers while facing a penalty kick executed with instep and inside foot. Then an attempt has been done to compare the gaze strategies of expert judoka and soccer goalkeepers in order to delineate possible differences related to the different conditions of reacting to events occurring in near (peripersonal) or far (extrapersonal) space. Judo Methods: A sample of 9 judoka (black belt) and 11 near judoka (white belt) were studied. Eye movements were recorded at 500Hz using a video based eye tracker (EyeLink II). Each subject participated in 40 sessions for about 40 minutes. Gaze behaviour was considered as average number of locations fixated per trial, the average number of fixations per trial, and mean fixation duration. Soccer Methods: Seven (n = 7) intermediate level male volunteered for the experiment. The kickers and goalkeepers, had at least varsity level soccer experience. The vision-in-action (VIA) system (Vickers 1996; Vickers 2007) was used to collect the coupled gaze and motor behaviours of the goalkeepers. This system integrated input from a mobile eye tracking system (Applied Sciences Laboratories) with an external video of the goalkeeper’s saving actions. The goalkeepers took 30 penalty kicks on a synthetic pitch in accordance with FIFA (2008) laws. Judo Results: Results indicate that experts group differed significantly from near expert for fixations duration, and number of fixations per trial. The expert judokas used a less exhaustive search strategy involving fewer fixations of longer duration than their novice counterparts and focused on central regions of the body. The results showed that in defence and attack situation expert group did a greater number of transitions with respect to their novice counterpart. Soccer Results: We found significant main effect for the number of locations fixated across outcome (goal/save) but not for foot contact (instep/inside). Participants spent more time fixating the areas in instep than inside kick and in goal than in save situation. Mean and standard error in search strategy as a result of foot contact and outcome indicate that the most gaze behaviour start and finish on ball interest areas. Conclusions: Expert goalkeepers tend to spend more time in inside-save than instep-save penalty, differences that was opposite in scored penalty kick. Judo results show that differences in visual behaviour related to the level of expertise appear mainly when the test presentation is continuous, last for a relatively long period of time and present a high level of uncertainty with regard to the chronology and the nature of events. Expert judoist performers “anchor” the fovea on central regions of the scene (lapel and face) while using peripheral vision to monitor opponents’ limb movements. The differences between judo and soccer gaze strategies are discussed on the light of physiological and neuropsychological differences between near and far space perception.
Resumo:
Transmissible spongiform encephalopathies (TSEs), or prion diseases, are neurodegenerative disorders that affect humans and mammals. Creutzfeldt-Jakob disease (CJD), the most common TSE in humans, can be sporadic (sCJD), genetic (gCJD), or acquired by infection. All TSEs are characterised by the accumulation of PrPSc, a misfolded form of the cellular protein PrPC. PrPSc is insoluble in detergents, partially resistant to proteolysis and shows a highly enriched β-sheet secondary structure. Six clinico-pathological phenotypes of sCJD have been characterized which correlate at the molecular level with two types (1 or 2) of PrPSc with distinctive physicochemical properties and the genotype at the polymorphic (methionine or valine) codon 129 of the prion protein gene. According to the protein-only hypothesis, which postulates that prions are composed exclusively of PrPSc, the strains of prions that are largely responsible for the wide spectrum of TSE phenotypes are enciphered in PrPSc conformation. In support to this view, studies mainly conducted in experimental scrapie, have shown that several prion strains can be identified based on distinguishing PrPSc biochemical properties. To further contribute to the understanding of the molecular basis of strains and to develop more sensitive strain typing assays in humans we have analyzed PrPSc biochemical properties in two experimental setting. In the first we compared the size of the core after protease digestion and the glycoform pattern of PrPSc before and after transmission of human prions to non human primates or bank voles, whereas in the second we analyzed the conformational stability of PrPSc associated with sCJD, vCJD or fCJD using guanidine hydrochloride (GdnHCl) as denaturant. Combining the results of the two studies, we were able to distinguish five human strains for at least one biochemical property. The present data extend our knowledge about the extent of strain variation and its relationship with PrPSc properties in human TSEs.
Resumo:
The improvement of devices provided by Nanotechnology has put forward new classes of sensors, called bio-nanosensors, which are very promising for the detection of biochemical molecules in a large variety of applications. Their use in lab-on-a-chip could gives rise to new opportunities in many fields, from health-care and bio-warfare to environmental and high-throughput screening for pharmaceutical industry. Bio-nanosensors have great advantages in terms of cost, performance, and parallelization. Indeed, they require very low quantities of reagents and improve the overall signal-to-noise-ratio due to increase of binding signal variations vs. area and reduction of stray capacitances. Additionally, they give rise to new challenges, such as the need to design high-performance low-noise integrated electronic interfaces. This thesis is related to the design of high-performance advanced CMOS interfaces for electrochemical bio-nanosensors. The main focus of the thesis is: 1) critical analysis of noise in sensing interfaces, 2) devising new techniques for noise reduction in discrete-time approaches, 3) developing new architectures for low-noise, low-power sensing interfaces. The manuscript reports a multi-project activity focusing on low-noise design and presents two developed integrated circuits (ICs) as examples of advanced CMOS interfaces for bio-nanosensors. The first project concerns low-noise current-sensing interface for DC and transient measurements of electrophysiological signals. The focus of this research activity is on the noise optimization of the electronic interface. A new noise reduction technique has been developed so as to realize an integrated CMOS interfaces with performance comparable with state-of-the-art instrumentations. The second project intends to realize a stand-alone, high-accuracy electrochemical impedance spectroscopy interface. The system is tailored for conductivity-temperature-depth sensors in environmental applications, as well as for bio-nanosensors. It is based on a band-pass delta-sigma technique and combines low-noise performance with low-power requirements.
Resumo:
Nanotechnology entails the manufacturing and manipulation of matter at length scales ranging from single atoms to micron-sized objects. The ability to address properties on the biologically-relevant nanometer scale has made nanotechnology attractive for Nanomedicine. This is perceived as a great opportunity in healthcare especially in diagnostics, therapeutics and more in general to develop personalized medicine. Nanomedicine has the potential to enable early detection and prevention, and to improve diagnosis, mass screening, treatment and follow-up of many diseases. From the biological standpoint, nanomaterials match the typical size of naturally occurring functional units or components of living organisms and, for this reason, enable more effective interaction with biological systems. Nanomaterials have the potential to influence the functionality and cell fate in the regeneration of organs and tissues. To this aim, nanotechnology provides an arsenal of techniques for intervening, fabricate, and modulate the environment where cells live and function. Unconventional micro- and nano-fabrication techniques allow patterning biomolecules and biocompatible materials down to the level of a few nanometer feature size. Patterning is not simply a deterministic placement of a material; in a more extended acception it allows a controlled fabrication of structures and gradients of different nature. Gradients are emerging as one of the key factors guiding cell adhesion, proliferation, migration and even differentiation in the case of stem cells. The main goal of this thesis has been to devise a nanotechnology-based strategy and tools to spatially and temporally control biologically-relevant phenomena in-vitro which are important in some fields of medical research.
Resumo:
Molecular self-assembly takes advantage of supramolecular non-covalent interactions (ionic, hydrophobic, van der Waals, hydrogen and coordination bonds) for the construction of organized and tunable systems. In this field, lipophilic guanosines can represent powerful building blocks thanks to their aggregation proprieties in organic solvents, which can be controlled by addition or removal of cations. For example, potassium ion can template the formation of piled G-quartets structures, while in its absence ribbon-like G aggregates are generated in solution. In this thesis we explored the possibility of using guanosines as scaffolds to direct the construction of ordered and self-assembled architectures, one of the main goals of bottom-up approach in nanotechnology. In Chapter III we will describe Langmuir-Blodgett films obtained from guanosines and other lipophilic nucleosides, revealing the “special” behavior of guanine in comparison with the other nucleobases. In Chapter IV we will report the synthesis of several thiophene-functionalized guanosines and the studies towards their possible use in organic electronics: the pre-programmed organization of terthiophene residues in ribbon aggregates could allow charge conduction through π-π stacked oligothiophene functionalities. The construction and the behavior of some simple electronic nanodevices based on these organized thiopehene-guanosine hybrids has been explored.
Resumo:
Organic printed electronics is attracting an ever-growing interest in the last decades because of its impressive breakthroughs concerning the chemical design of π-conjugated materials and their processing. This has an impact on novel applications, such as flexible-large-area displays, low- cost printable circuits, plastic solar cells and lab-on-a-chip devices. The organic field-effect transistor (OFET) relies on a thin film of organic semiconductor that bridges source and drain electrodes. Since its first discovery in the 80s, intensive research activities were deployed in order to control the chemico-physical properties of these electronic devices and consequently their charge. Self-assembled monolayers (SAMs) are a versatile tool for tuning the properties of metallic, semi-conducting, and insulating surfaces. Within this context, OFETs represent reliable instruments for measuring the electrical properties of the SAMs in a Metal/SAM/OS junction. Our experimental approach, named Charge Injection Organic-Gauge (CIOG), uses OTFT in a charge-injection controlled regime. The CIOG sensitivity has been extensively demonstrated on different homologous self-assembling molecules that differ in either chain length or in anchor/terminal group. One of the latest applications of organic electronics is the so-called “bio-electronics” that makes use of electronic devices to encompass interests of the medical science, such as biosensors, biotransducers etc… As a result, thee second part of this thesis deals with the realization of an electronic transducer based on an Organic Field-Effect Transistor operating in aqueous media. Here, the conventional bottom gate/bottom contact configuration is replaced by top gate architecture with the electrolyte that ensures electrical contact between the top gold electrode and the semiconductor layer. This configuration is named Electrolyte-Gated Field-Effect Transistor (EGOFET). The functionalization of the top electrode is the sensing core of the device allowing the detection of dopamine as well as of protein biomarkers with ultra-low sensitivity.
Resumo:
Questo studio propone un'esplorazione dei nessi tra processi migratori ed esperienze di salute e malattia a partire da un'indagine sulle migrazioni provenienti dall'America latina in Emilia-Romagna. Contemporaneamente indaga i termini del dibattito sulla diffusione della Malattia di Chagas, “infezione tropicale dimenticata” endemica in America centro-meridionale che, grazie all'incremento dei flussi migratori transnazionali, viene oggi riconfigurata come 'emergente' in alcuni contesti di immigrazione. Attraverso i paradigmi teorico-metodologici disciplinari dell'antropologia medica, della salute globale e degli studi sulle migrazioni, si è inteso indagare la natura della relazione tra “dimenticanza” ed “emergenza” nelle politiche che caratterizzano il contesto migratorio europeo e italiano nello specifico. Si sono analizzate questioni vincolate alla legittimità degli attori coinvolti nella ridefinizione del fenomeno in ambito pubblico; alle visioni che informano le strategie sanitarie di presa in carico dell'infezione; alle possibili ricadute di tali visioni nelle pratiche di cura. Parte della ricerca si è realizzata all'interno del reparto ospedaliero ove è stato implementato il primo servizio di diagnosi e trattamento per l'infezione in Emilia-Romagna. È stata pertanto realizzata una etnografia fuori/dentro al servizio, coinvolgendo i principali soggetti del campo di indagine -immigrati latinoamericani e operatori sanitari-, con lo scopo di cogliere visioni, logiche e pratiche a partire da un'analisi della legislazione che regola l'accesso al servizio sanitario pubblico in Italia. Attraverso la raccolta di narrazioni biografiche, lo studio ha contribuito a far luce su peculiari percorsi migratori e di vita nel contesto locale; ha permesso di riflettere sulla validità di categorie come quella di “latinoamericano” utilizzata dalla comunità scientifica in stretta correlazione con il Chagas; ha riconfigurato il senso di un approccio attento alle connotazioni culturali all'interno di un più ampio ripensamento delle forme di inclusione e di partecipazione finalizzate a dare asilo ai bisogni sanitari maggiormente percepiti e alle esperienze soggettive di malattia.