27 resultados para Savignano, Guidi, Rotonda, Muratura, Marconi
Resumo:
The present thesis focuses on the problem of robust output regulation for minimum phase nonlinear systems by means of identification techniques. Given a controlled plant and an exosystem (an autonomous system that generates eventual references or disturbances), the control goal is to design a proper regulator able to process the only measure available, i.e the error/output variable, in order to make it asymptotically vanishing. In this context, such a regulator can be designed following the well known “internal model principle” that states how it is possible to achieve the regulation objective by embedding a replica of the exosystem model in the controller structure. The main problem shows up when the exosystem model is affected by parametric or structural uncertainties, in this case, it is not possible to reproduce the exact behavior of the exogenous system in the regulator and then, it is not possible to achieve the control goal. In this work, the idea is to find a solution to the problem trying to develop a general framework in which coexist both a standard regulator and an estimator able to guarantee (when possible) the best estimate of all uncertainties present in the exosystem in order to give “robustness” to the overall control loop.
Resumo:
Lo studio è stato condotto su pazienti affetti da carcinoma nasale trattati con radioterapia presso il Centro Oncologico Veterinario (Sasso Marconi, BO). Lo studio, prospettico, randomizzato e in doppio cieco, ha valutato l’efficacia del trattamento radioterapico in combinazione o meno con firocoxib, un inibitore selettivo dell’enzima ciclossigenasi 2 (COX-2). Sono stati inclusi pazienti con diagnosi istologica di carcinoma nasale sottoposti a stadiazione completa. I pazienti sono stati successivamente suddivisi in due gruppi in base alla tipologia di trattamento: radioterapia associata a firocoxib (Gruppo 1) o solo radioterapia (Gruppo 2). Dopo il trattamento, i pazienti sono stati monitorati a intervalli di 3 mesi sia clinicamente che mediante esami collaterali, al fine di valutare condizioni generali del paziente, un’eventuale tossicità dovuta alla somministrazione di firocoxib e la risposta oggettiva al trattamento. Per valutare la qualità di vita dei pazienti durante la terapia, è stato richiesto ai proprietari la compilazione mensile di un questionario. La mediana del tempo libero da progressione (PFI) è stata di 228 giorni (range 73-525) nel gruppo dei pazienti trattati con radioterapia e firocoxib e di 234 giorni (range 50-475) nei pazienti trattati solo con radioterapia. La sopravvivenza mediana (OS) nel Gruppo 1 è stata di 335 giorni (range 74-620) e di 244 giorni (range 85-505) nel Gruppo 2. Non si sono riscontrate differenze significative di PFI e OS tra i due gruppi. La presenza di metastasi ai linfonodi regionali condizionava negativamente PFI e sopravvivenza (P = 0.004). I pazienti trattati con firocoxib hanno mostrato un significativo beneficio in termini di qualità di vita rispetto ai pazienti trattati con sola radioterapia (P=0.008). La radioterapia può essere considerata un’efficace opzione terapeutica per i cani affetti da neoplasie nasali. Firocoxib non sembra migliorare significativamente i tempi di sopravvivenza, ma risulta utile al fine di garantire una migliore qualità di vita.
Resumo:
A new control scheme has been presented in this thesis. Based on the NonLinear Geometric Approach, the proposed Active Control System represents a new way to see the reconfigurable controllers for aerospace applications. The presence of the Diagnosis module (providing the estimation of generic signals which, based on the case, can be faults, disturbances or system parameters), mean feature of the depicted Active Control System, is a characteristic shared by three well known control systems: the Active Fault Tolerant Controls, the Indirect Adaptive Controls and the Active Disturbance Rejection Controls. The standard NonLinear Geometric Approach (NLGA) has been accurately investigated and than improved to extend its applicability to more complex models. The standard NLGA procedure has been modified to take account of feasible and estimable sets of unknown signals. Furthermore the application of the Singular Perturbations approximation has led to the solution of Detection and Isolation problems in scenarios too complex to be solved by the standard NLGA. Also the estimation process has been improved, where multiple redundant measuremtent are available, by the introduction of a new algorithm, here called "Least Squares - Sliding Mode". It guarantees optimality, in the sense of the least squares, and finite estimation time, in the sense of the sliding mode. The Active Control System concept has been formalized in two controller: a nonlinear backstepping controller and a nonlinear composite controller. Particularly interesting is the integration, in the controller design, of the estimations coming from the Diagnosis module. Stability proofs are provided for both the control schemes. Finally, different applications in aerospace have been provided to show the applicability and the effectiveness of the proposed NLGA-based Active Control System.
Resumo:
In this thesis, the author presents a query language for an RDF (Resource Description Framework) database and discusses its applications in the context of the HELM project (the Hypertextual Electronic Library of Mathematics). This language aims at meeting the main requirements coming from the RDF community. in particular it includes: a human readable textual syntax and a machine-processable XML (Extensible Markup Language) syntax both for queries and for query results, a rigorously exposed formal semantics, a graph-oriented RDF data access model capable of exploring an entire RDF graph (including both RDF Models and RDF Schemata), a full set of Boolean operators to compose the query constraints, fully customizable and highly structured query results having a 4-dimensional geometry, some constructions taken from ordinary programming languages that simplify the formulation of complex queries. The HELM project aims at integrating the modern tools for the automation of formal reasoning with the most recent electronic publishing technologies, in order create and maintain a hypertextual, distributed virtual library of formal mathematical knowledge. In the spirit of the Semantic Web, the documents of this library include RDF metadata describing their structure and content in a machine-understandable form. Using the author's query engine, HELM exploits this information to implement some functionalities allowing the interactive and automatic retrieval of documents on the basis of content-aware requests that take into account the mathematical nature of these documents.
Resumo:
Introduction: The role of psychosocial factors in the onset and progression of essential hypertension has been object of a large body of literature, yet findings appear to be controversial. Aims: We assessed the predictive role of psychosomatic syndromes, affective symptomatology, psychological reactance, psychological distress, well-being and quality of life on adherence to antihypertensive medications, lifestyle behaviors, hypertension severity and absolute cardiovascular risk grading, as well as their temporal stability at 1-year follow-up, in a sample of hypertensive patients. In addition, we aimed to validate the Italian version of the Hong Psychological Reactance Scale (HPRS). Methods: Eighty consecutive hypertensive outpatients treated with antihypertensive medications were compared to 80 controls. Psychosocial variables were assessed using clinical interviews and self-rating questionnaires at baseline and at 1-year follow-up. Cardiac parameters were also collected. One-hundred and fifty individuals from general population provided data for the HPRS validation. Results: Hypertensive patients reported significantly higher levels of psychological distress and lower levels of psychological well-being at baseline compared to controls. Among hypertensive patients, allostatic overload (AO) was the most frequently reported psychosomatic syndrome at baseline. Patients with AO displayed significantly greater levels of psychological distress and lower levels of well-being and quality of life than those without. Further, patients with illness denial were significantly more likely to report poor adherence to pharmacological treatment and, as well as those with higher levels of affective symptomatology, were less likely to follow a balanced diet. At follow-up, patients displayed significantly higher levels of well-being and lower levels of stress, mental pain and quality of life. Conclusions: Findings suggest the clinical relevance of psychosocial factors and psychosomatic syndromes in the progression of hypertension, with important implications for its management. As to the Italian validation of the HPRS, results support previous findings, even though a confirmatory factor analysis should be carried out.
Resumo:
The main goal of the Airborne project is to develop, at technology readiness level 8 (TRL8), a few selected robotic aerial technologies for quick localization of victims by avalanches by equipping drones with two forefront sensors used in SAR operations in case of avalanches, namely the ARVA and RECCO. This thesis focuses on the design, development, and guidance of the TRL8 quadrotor developed during the project. We present and describe the design method that allowed us to obtain an EMI shielded UAV capable of integrating both RECCO and ARVA sensors. Besides, is presented the avionics and power train design and building procedure in order to obtain a modular UAV frame that can be easily carried by rescuers and achieves all the performance benchmarks of the project. Additionally, in addition to the onboard algorithms, a multivariate regressive convolutional neural network whose goal is the localization of the ARVA signal is presented. On guidance, the automatic flight procedure is described, and the onboard waypoint generator algorithm is presented. The goal of this algorithm is the generation and execution of an automatic grid pattern without the need to know the map in advance and without the support of a control ground station (CGS). Moreover, we present an iterative trajectory planner that does not need pre-knowledge of the map and uses Bézier curves to address optimal, dynamically feasible, safe, and re-plannable trajectories. The goal is to develop a method that allows local and fast replannings in case of an obstacle pop up or if some waypoints change. This makes the novel planner suitable to be applied in SAR operations. The introduction of the final version of the quadrotor is supported by internal flight tests and field tests performed in real operative scenarios by the Club Alpino Italiano (CAI).
Resumo:
This thesis deals with robust adaptive control and its applications, and it is divided into three main parts. The first part is about the design of robust estimation algorithms based on recursive least squares. First, we present an estimator for the frequencies of biased multi-harmonic signals, and then an algorithm for distributed estimation of an unknown parameter over a network of adaptive agents. In the second part of this thesis, we consider a cooperative control problem over uncertain networks of linear systems and Kuramoto systems, in which the agents have to track the reference generated by a leader exosystem. Since the reference signal is not available to each network node, novel distributed observers are designed so as to reconstruct the reference signal locally for each agent, and therefore decentralizing the problem. In the third and final part of this thesis, we consider robust estimation tasks for mobile robotics applications. In particular, we first consider the problem of slip estimation for agricultural tracked vehicles. Then, we consider a search and rescue application in which we need to drive an unmanned aerial vehicle as close as possible to the unknown (and to be estimated) position of a victim, who is buried under the snow after an avalanche event. In this thesis, robustness is intended as an input-to-state stability property of the proposed identifiers (sometimes referred to as adaptive laws), with respect to additive disturbances, and relative to a steady-state trajectory that is associated with a correct estimation of the unknown parameter to be found.
Resumo:
Understanding why market manipulation is conducted, under which conditions it is the most profitable and investigating the magnitude of these practices are crucial questions for financial regulators. Closing price manipulation induced by derivatives’ expiration is the primary subject of this thesis. The first chapter provides a mathematical framework in continuous time to study the incentive to manipulate a set of securities induced by a derivative position. An agent holding a European-type contingent claim, depending on the price of a basket of underlying securities, is considered. The agent can affect the price of the underlying securities by trading on each of them before expiration. The elements of novelty are at least twofold: (1) a multi-asset market is considered; (2) the problem is solved by means of both classic optimisation and stochastic control techniques. Both linear and option payoffs are considered. In the second chapter an empirical investigation is conducted on the existence of expiration day effects on the UK equity market. Intraday data on FTSE 350 stocks over a six-year period from 2015-2020 are used. The results show that the expiration of index derivatives is associated with a rise in both trading activity and volatility, together with significant price distortions. The expiration of single stock options appears to have little to no impact on the underlying securities. The last chapter examines the existence of patterns in line with closing price manipulation of UK stocks on option expiration days. The main contributions are threefold: (1) this is one of the few empirical studies on manipulation induced by the options market; (2) proprietary equity orderbook and transaction data sets are used to define manipulation proxies, providing a more detailed analysis; (3) the behaviour of proprietary trading firms is studied. Despite the industry concerns, no evidence is found of this type of manipulative behaviour.
Resumo:
This thesis work has been motivated by an internal benchmark dealing with the output regulation problem of a nonlinear non-minimum phase system in the case of full-state feedback. The system under consideration structurally suffers from finite escape time, and this condition makes the output regulation problem very hard even for very simple steady-state evolution or exosystem dynamics, such as a simple integrator. This situation leads to studying the approaches developed for controlling Non-minimum phase systems and how they affect feedback performances. Despite a lot of frequency domain results, only a few works have been proposed for describing the performance limitations in a state space system representation. In particular, in our opinion, the most relevant research thread exploits the so-called Inner-Outer Decomposition. Such decomposition allows splitting the Non-minimum phase system under consideration into a cascade of two subsystems: a minimum phase system (the outer) that contains all poles of the original system and an all-pass Non-minimum phase system (the inner) that contains all the unavoidable pathologies of the unstable zero dynamics. Such a cascade decomposition was inspiring to start working on functional observers for linear and nonlinear systems. In particular, the idea of a functional observer is to exploit only the measured signals from the system to asymptotically reconstruct a certain function of the system states, without necessarily reconstructing the whole state vector. The feature of asymptotically reconstructing a certain state functional plays an important role in the design of a feedback controller able to stabilize the Non-minimum phase system.
Resumo:
Agricultural techniques have been improved over the centuries to match with the growing demand of an increase in global population. Farming applications are facing new challenges to satisfy global needs and the recent technology advancements in terms of robotic platforms can be exploited. As the orchard management is one of the most challenging applications because of its tree structure and the required interaction with the environment, it was targeted also by the University of Bologna research group to provide a customized solution addressing new concept for agricultural vehicles. The result of this research has blossomed into a new lightweight tracked vehicle capable of performing autonomous navigation both in the open-filed scenario and while travelling inside orchards for what has been called in-row navigation. The mechanical design concept, together with customized software implementation has been detailed to highlight the strengths of the platform and some further improvements envisioned to improve the overall performances. Static stability testing has proved that the vehicle can withstand steep slopes scenarios. Some improvements have also been investigated to refine the estimation of the slippage that occurs during turning maneuvers and that is typical of skid-steering tracked vehicles. The software architecture has been implemented using the Robot Operating System (ROS) framework, so to exploit community available packages related to common and basic functions, such as sensor interfaces, while allowing dedicated custom implementation of the navigation algorithm developed. Real-world testing inside the university’s experimental orchards have proven the robustness and stability of the solution with more than 800 hours of fieldwork. The vehicle has also enabled a wide range of autonomous tasks such as spraying, mowing, and on-the-field data collection capabilities. The latter can be exploited to automatically estimate relevant orchard properties such as fruit counting and sizing, canopy properties estimation, and autonomous fruit harvesting with post-harvesting estimations.
Resumo:
In the last decades, we saw a soaring interest in autonomous robots boosted not only by academia and industry, but also by the ever in- creasing demand from civil users. As a matter of fact, autonomous robots are fast spreading in all aspects of human life, we can see them clean houses, navigate through city traffic, or harvest fruits and vegetables. Almost all commercial drones already exhibit unprecedented and sophisticated skills which makes them suitable for these applications, such as obstacle avoidance, simultaneous localisation and mapping, path planning, visual-inertial odometry, and object tracking. The major limitations of such robotic platforms lie in the limited payload that can carry, in their costs, and in the limited autonomy due to finite battery capability. For this reason researchers start to develop new algorithms able to run even on resource constrained platforms both in terms of computation capabilities and limited types of endowed sensors, focusing especially on very cheap sensors and hardware. The possibility to use a limited number of sensors allowed to scale a lot the UAVs size, while the implementation of new efficient algorithms, performing the same task in lower time, allows for lower autonomy. However, the developed robots are not mature enough to completely operate autonomously without human supervision due to still too big dimensions (especially for aerial vehicles), which make these platforms unsafe for humans, and the high probability of numerical, and decision, errors that robots may make. In this perspective, this thesis aims to review and improve the current state-of-the-art solutions for autonomous navigation from a purely practical point of view. In particular, we deeply focused on the problems of robot control, trajectory planning, environments exploration, and obstacle avoidance.
Resumo:
There are many diseases that affect the thyroid gland, and among them are carcinoma. Thyroid cancer is the most common endocrine neoplasm and the second most frequent cancer in the 0-49 age group. This thesis deals with two studies I conducted during my PhD. The first concerns the development of a Deep Learning model to be able to assist the pathologist in screening of thyroid cytology smears. This tool created in collaboration with Prof. Diciotti, affiliated with the DEI-UNIBO "Guglielmo Marconi" Department of Electrical Energy and Information Engineering, has an important clinical implication in that it allows patients to be stratified between those who should undergo surgery and those who should not. The second concerns the application of spatial transcriptomics on well-differentiated thyroid carcinomas to better understand their invasion mechanisms and thus to better comprehend which genes may be involved in the proliferation of these tumors. This project specifically was made possible through a fruitful collaboration with the Gustave Roussy Institute in Paris. Studying thyroid carcinoma deeply is essential to improve patient care, increase survival rates, and enhance the overall understanding of this prevalent cancer. It can lead to more effective prevention, early detection, and treatment strategies that benefit both patients and the healthcare system.