17 resultados para STELLAR


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The way mass is distributed in galaxies plays a major role in shaping their evolution across cosmic time. The galaxy's total mass is usually determined by tracing the motion of stars in its potential, which can be probed observationally by measuring stellar spectra at different distances from the galactic centre, whose kinematics is used to constrain dynamical models. A class of such models, commonly used to accurately determine the distribution of luminous and dark matter in galaxies, is that of equilibrium models. In this Thesis, a novel approach to the design of equilibrium dynamical models, in which the distribution function is an analytic function of the action integrals, is presented. Axisymmetric and rotating models are used to explain observations of a sample of nearby early-type galaxies in the Calar Alto Legacy Integral Field Area survey. Photometric and spectroscopic data for round and flattened galaxies are well fitted by the models, which are then used to get the galaxies' total mass distribution and orbital anisotropy. The time evolution of massive early-type galaxies is also investigated with numerical models. Their structural properties (mass, size, velocity dispersion) are observed to evolve, on average, with redshift. In particular, they appear to be significantly more compact at higher redshift, at fixed stellar mass, so it is interesting to investigate what drives such evolution. This Thesis focuses on the role played by dark-matter haloes: their mass-size and mass-velocity dispersion correlations evolve similarly to the analogous correlations of ellipticals; at fixed halo mass, the haloes are more compact at higher redshift, similarly to massive galaxies; a simple model, in which all the galaxy's size and velocity-dispersion evolution is due to the cosmological evolution of the underlying halo population, reproduces the observed size and velocity-dispersion of massive compact early-type galaxies up to redshift of about 2.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this Thesis, we study the accretion of mass and angular momentum onto the disc of spiral galaxies from a global and a local perspective and comparing theory predictions with several observational data. First, we propose a method to measure the specific mass and radial growth rates of stellar discs, based on their star formation rate density profiles and we apply it to a sample of nearby spiral galaxies. We find a positive radial growth rate for almost all galaxies in our sample. Our galaxies grow in size, on average, at one third of the rate at which they grow in mass. Our results are in agreement with theoretical expectations if known scaling relations of disc galaxies are not evolving with time. We also propose a novel method to reconstruct accretion profiles and the local angular momentum of the accreting material from the observed structural and chemical properties of spiral galaxies. Applied to the Milky Way and to one external galaxy, our analysis indicates that accretion occurs at relatively large radii and has a local deficit of angular momentum with respect to the disc. Finally, we show how structure and kinematics of hot gaseous coronae, which are believed to be the source of mass and angular momentum of massive spiral galaxies, can be reconstructed from their angular momentum and entropy distributions. We find that isothermal models with cosmologically motivated angular momentum distributions are compatible with several independent observational constraints. We also consider more complex baroclinic equilibria: we describe a new parametrization for these states, a new self-similar family of solution and a method for reconstructing structure and kinematics from the joint angular momentum/entropy distribution.