20 resultados para Risks Assessment Methods
Resumo:
A first phase of the research activity has been related to the study of the state of art of the infrastructures for cycling, bicycle use and methods for evaluation. In this part, the candidate has studied the "bicycle system" in countries with high bicycle use and in particular in the Netherlands. Has been carried out an evaluation of the questionnaires of the survey conducted within the European project BICY on mobility in general in 13 cities of the participating countries. The questionnaire was designed, tested and implemented, and was later validated by a test in Bologna. The results were corrected with information on demographic situation and compared with official data. The cycling infrastructure analysis was conducted on the basis of information from the OpenStreetMap database. The activity consisted in programming algorithms in Python that allow to extract data from the database infrastructure for a region, to sort and filter cycling infrastructure calculating some attributes, such as the length of the arcs paths. The results obtained were compared with official data where available. The structure of the thesis is as follows: 1. Introduction: description of the state of cycling in several advanced countries, description of methods of analysis and their importance to implement appropriate policies for cycling. Supply and demand of bicycle infrastructures. 2. Survey on mobility: it gives details of the investigation developed and the method of evaluation. The results obtained are presented and compared with official data. 3. Analysis cycling infrastructure based on information from the database of OpenStreetMap: describes the methods and algorithms developed during the PhD. The results obtained by the algorithms are compared with official data. 4. Discussion: The above results are discussed and compared. In particular the cycle demand is compared with the length of cycle networks within a city. 5. Conclusions
Resumo:
Recent years observed massive growth in wearable technology, everything can be smart: phones, watches, glasses, shirts, etc. These technologies are prevalent in various fields: from wellness/sports/fitness to the healthcare domain. The spread of this phenomenon led the World-Health-Organization to define the term 'mHealth' as "medical and public health practice supported by mobile devices, such as mobile phones, patient monitoring devices, personal digital assistants, and other wireless devices". Furthermore, mHealth solutions are suitable to perform real-time wearable Biofeedback (BF) systems: sensors in the body area network connected to a processing unit (smartphone) and a feedback device (loudspeaker) to measure human functions and return them to the user as (bio)feedback signal. During the COVID-19 pandemic, this transformation of the healthcare system has been dramatically accelerated by new clinical demands, including the need to prevent hospital surges and to assure continuity of clinical care services, allowing pervasive healthcare. Never as of today, we can say that the integration of mHealth technologies will be the basis of this new era of clinical practice. In this scenario, this PhD thesis's primary goal is to investigate new and innovative mHealth solutions for the Assessment and Rehabilitation of different neuromotor functions and diseases. For the clinical assessment, there is the need to overcome the limitations of subjective clinical scales. Creating new pervasive and self-administrable mHealth solutions, this thesis investigates the possibility of employing innovative systems for objective clinical evaluation. For rehabilitation, we explored the clinical feasibility and effectiveness of mHealth systems. In particular, we developed innovative mHealth solutions with BF capability to allow tailored rehabilitation. The main goal that a mHealth-system should have is improving the person's quality of life, increasing or maintaining his autonomy and independence. To this end, inclusive design principles might be crucial, next to the technical and technological ones, to improve mHealth-systems usability.
Resumo:
Changing or creating an organisation means creating a new process. Each process involves many risks that need to be identified and managed. The main risks considered here are procedural and legal risks. The former are related to the risks of errors that may occur during processes, while the latter are related to the compliance of processes with regulations. Managing the risks implies proposing changes to the processes that allow the desired result: an optimised process. In order to manage a company and optimise it in the best possible way, not only should the organisational aspect, risk management and legal compliance be taken into account, but it is important that they are all analysed simultaneously with the aim of finding the right balance that satisfies them all. This is the aim of this thesis, to provide methods and tools to balance these three characteristics, and to enable this type of optimisation, ICT support is used. This work isn’t a thesis in computer science or law, but rather an interdisciplinary thesis. Most of the work done so far is vertical and in a specific domain. The particularity and aim of this thesis is not to carry out an in-depth analysis of a particular aspect, but rather to combine several important aspects, normally analysed separately, which however have an impact and influence each other. In order to carry out this kind of interdisciplinary analysis, the knowledge base of both areas was involved and the combination and collaboration of different experts in the various fields was necessary. Although the methodology described is generic and can be applied to all sectors, the case study considered is a new type of healthcare service that allows patients in acute disease to be hospitalised to their home. This provide the possibility to perform experiments using real hospital database.
Resumo:
The challenges of the current global food systems are often framed around feeding the world's growing population while meeting sustainable development for future generations. Globalization has brought to a fragmentation of food spaces, leading to a flexible and mutable supply chain. This poses a major challenge to food and nutrition security, affecting also rural-urban dynamics in territories. Furthermore, the recent crises have highlighted the vulnerability to shocks and disruptions of the food systems and the eco-system due to the intensive management of natural, human and economic capital. Hence, a sustainable and resilient transition of the food systems is required through a multi-faceted approach that tackles the causes of unsustainability and promotes sustainable practices at all levels of the food system. In this respect, a territorial approach becomes a relevant entry point of analysis for the food system’s multifunctionality and can support the evaluation of sustainability by quantifying impacts associated with quantitative methods and understanding the territorial responsibility of different actors with qualitative ones. Against this background the present research aims to i) investigate the environmental, costing and social indicators suitable for a scoring system able to measure the integrated sustainability performance of food initiatives within the City/Region territorial context; ii) develop a territorial assessment framework to measure sustainability impacts of agricultural systems; and iii) define an integrated methodology to match production and consumption at a territorial level to foster a long-term vision of short food supply chains. From a methodological perspective, the research proposes a mixed quantitative and qualitative research method. The outcomes provide an in-depth view into the environmental and socio-economic impacts of food systems at the territorial level, investigating possible indicators, frameworks, and business strategies to foster their future sustainable development.
Resumo:
Natural events are a widely recognized hazard for industrial sites where relevant quantities of hazardous substances are handled, due to the possible generation of cascading events resulting in severe technological accidents (Natech scenarios). Natural events may damage storage and process equipment containing hazardous substances, that may be released leading to major accident scenarios called Natech events. The need to assess the risk associated with Natech scenarios is growing and methodologies were developed to allow the quantification of Natech risk, considering both point sources and linear sources as pipelines. A key element of these procedures is the use of vulnerability models providing an estimation of the damage probability of equipment or pipeline segment as a result of the impact of the natural event. Therefore, the first aim of the PhD project was to outline the state of the art of vulnerability models for equipment and pipelines subject to natural events such as floods, earthquakes, and wind. Moreover, the present PhD project also aimed at the development of new vulnerability models in order to fill some gaps in literature. In particular, a vulnerability model for vertical equipment subject to wind and to flood were developed. Finally, in order to improve the calculation of Natech risk for linear sources an original methodology was developed for Natech quantitative risk assessment methodology for pipelines subject to earthquakes. Overall, the results obtained are a step forward in the quantitative risk assessment of Natech accidents. The tools developed open the way to the inclusion of new equipment in the analysis of Natech events, and the methodology for the assessment of linear risk sources as pipelines provides an important tool for a more accurate and comprehensive assessment of Natech risk.