18 resultados para Right to Just and Reasonable Working Conditions
Resumo:
This research investigates the use of Artificial Intelligence (AI) systems for profiling and decision-making, and the consequences that it poses to rights and freedoms of individuals. In particular, the research considers that automated decision-making systems (ADMs) are opaque, can be biased, and their logic is correlation-based. For these reasons, ADMs do not take decisions as human beings do. Against this background, the risks for the rights of individuals combined with the demand for transparency of algorithms have created a debate on the need for a new 'right to explanation'. Assuming that, except in cases provided for by law, a decision made by a human does not entitle to a right to explanation, the question has been raised as to whether – if the decision is made by an algorithm – it is necessary to configure a right to explanation for the decision-subject. Therefore, the research addresses a right to explanation of automated decision-making, examining the relation between today’s technology and legal concepts of explanation, reasoning, and transparency. In particular, it focuses on the existence and scope of the right to explanation, considering legal and technical issues surrounding the use of ADMs. The research analyses the use of AI and the problems arising from it from a legal perspective, studying the EU legal framework – especially in the data protection field. In this context, a part of the research is focused on transparency requirements under the GDPR (namely, Articles 13–15, 22, as well as Recital 71). The research aims to outline an interpretative framework of such a right and make recommendations about its development, aiming to provide guidelines for an adequate explanation of automated decisions. Hence, the thesis analyses what an explanation might consist of, and the benefits of explainable AI – examined from legal and technical perspectives.
Resumo:
This PhD thesis deals with three different topics: i) sulfoxonium ylides, ii) donor-acceptor cyclopropanes, and iii) desymmetrization reactions. Catalysis, and in more detail organocatalysis, is the fil rouge linking the three subjects of study. The main focus treated during this doctorate period is the reactivity of sulfoxonium ylides, and in particular stabilized sulfoxonium ylides. Special attention has been dedicated to the behavior of these particular substrates under asymmetric and non-asymmetric reaction conditions. Moreover, also similarities and differences with the related, less stable, sulfonium ylides were fully analyzed, both experimentally and from a theoretical point of view. Two different reactions were developed in full. One conducted under acidic reaction conditions and the second one exploiting the asymmetric aminocatalysis. Subsequently, the reactivity of donor-acceptor cyclopropanes was studied. After different attempts in the development of a new catalytic methodology based on these substrates, a non-conventional reactivity conducted under phase transfer catalysis was discovered and optimized. In particular, a chemodivergent reaction depending on the reaction conditions was developed. Finally, during the period spent abroad, a preliminary study of a desymmetrization reaction was carried out. The studied reaction is based on an asymmetric elimination reaction conducted under asymmetric phosphoric acid catalysis. In summary, this PhD thesis shows the versatility of different organocatalytic methodologies when applied to different reactions and substrates.
Resumo:
With the aim of heading towards a more sustainable future, there has been a noticeable increase in the installation of Renewable Energy Sources (RES) in power systems in the latest years. Besides the evident environmental benefits, RES pose several technological challenges in terms of scheduling, operation, and control of transmission and distribution power networks. Therefore, it raised the necessity of developing smart grids, relying on suitable distributed measurement infrastructure, for instance, based on Phasor Measurement Units (PMUs). Not only are such devices able to estimate a phasor, but they can also provide time information which is essential for real-time monitoring. This Thesis falls within this context by analyzing the uncertainty requirements of PMUs in distribution and transmission applications. Concerning the latter, the reliability of PMU measurements during severe power system events is examined, whereas for the first, typical configurations of distribution networks are studied for the development of target uncertainties. The second part of the Thesis, instead, is dedicated to the application of PMUs in low-inertia power grids. The replacement of traditional synchronous machines with inertia-less RES is progressively reducing the overall system inertia, resulting in faster and more severe events. In this scenario, PMUs may play a vital role in spite of the fact that no standard requirements nor target uncertainties are yet available. This Thesis deeply investigates PMU-based applications, by proposing a new inertia index relying only on local measurements and evaluating their reliability in low-inertia scenarios. It also develops possible uncertainty intervals based on the electrical instrumentation currently used in power systems and assesses the interoperability with other devices before and after contingency events.