17 resultados para Random complex networks
Resumo:
Massive Internet of Things is expected to play a crucial role in Beyond 5G (B5G) wireless communication systems, offering seamless connectivity among heterogeneous devices without human intervention. However, the exponential proliferation of smart devices and IoT networks, relying solely on terrestrial networks, may not fully meet the demanding IoT requirements in terms of bandwidth and connectivity, especially in areas where terrestrial infrastructures are not economically viable. To unleash the full potential of 5G and B5G networks and enable seamless connectivity everywhere, the 3GPP envisions the integration of Non-Terrestrial Networks (NTNs) into the terrestrial ones starting from Release 17. However, this integration process requires modifications to the 5G standard to ensure reliable communications despite typical satellite channel impairments. In this framework, this thesis aims at proposing techniques at the Physical and Medium Access Control layers that require minimal adaptations in the current NB-IoT standard via NTN. Thus, firstly the satellite impairments are evaluated and, then, a detailed link budget analysis is provided. Following, analyses at the link and the system levels are conducted. In the former case, a novel algorithm leveraging time-frequency analysis is proposed to detect orthogonal preambles and estimate the signals’ arrival time. Besides, the effects of collisions on the detection probability and Bit Error Rate are investigated and Non-Orthogonal Multiple Access approaches are proposed in the random access and data phases. The system analysis evaluates the performance of random access in case of congestion. Various access parameters are tested in different satellite scenarios, and the performance is measured in terms of access probability and time required to complete the procedure. Finally, a heuristic algorithm is proposed to jointly design the access and data phases, determining the number of satellite passages, the Random Access Periodicity, and the number of uplink repetitions that maximize the system's spectral efficiency.
Resumo:
Spiking Neural Networks (SNNs) are bio-inspired Artificial Neural Networks (ANNs) utilizing discrete spiking signals, akin to neuron communication in the brain, making them ideal for real-time and energy-efficient Cyber-Physical Systems (CPSs). This thesis explores their potential in Structural Health Monitoring (SHM), leveraging low-cost MEMS accelerometers for early damage detection in motorway bridges. The study focuses on Long Short-Term SNNs (LSNNs), although their complex learning processes pose challenges. Comparing LSNNs with other ANN models and training algorithms for SHM, findings indicate LSNNs' effectiveness in damage identification, comparable to ANNs trained using traditional methods. Additionally, an optimized embedded LSNN implementation demonstrates a 54% reduction in execution time, but with longer pre-processing due to spike-based encoding. Furthermore, SNNs are applied in UAV obstacle avoidance, trained directly using a Reinforcement Learning (RL) algorithm with event-based input from a Dynamic Vision Sensor (DVS). Performance evaluation against Convolutional Neural Networks (CNNs) highlights SNNs' superior energy efficiency, showing a 6x decrease in energy consumption. The study also investigates embedded SNN implementations' latency and throughput in real-world deployments, emphasizing their potential for energy-efficient monitoring systems. This research contributes to advancing SHM and UAV obstacle avoidance through SNNs' efficient information processing and decision-making capabilities within CPS domains.