24 resultados para RENEWABLE ENERGY SOURCES
Resumo:
L’energia da onda potrebbe assumere un ruolo fondamentale per la transizione energetica durante i prossimi decenni, grazie alla sua continuità nel tempo molto superiore rispetto ad altre risorse rinnovabili e alla sua vasta distribuzione nello spazio. Tuttavia, l’energia da onda è ancora lontana dall’essere economicamente sostenibile, a causa di diverse problematiche tecnologiche e alle difficoltà finanziarie associate. In questa ricerca, si è innanzitutto affrontata una delle maggiori sfide tecniche, nello specifico la progettazione e modellazione di sistemi di ancoraggio per i dispositivi galleggianti, proponendo possibili soluzioni per la modellazione numerica di sistemi di ancoraggio complessi e per l’ottimizzazione dei dispositivi stessi. Successivamente sono state analizzate le possibili sinergie strategiche di installazioni per lo sfruttamento della energia da onda con altre risorse rinnovabili e la loro applicazione nel contesto di aree marine multiuso. In particolare, una metodologia per la valutazione della combinazione ottimale delle risorse rinnovabili è stata sviluppata e verificata in due diversi casi studio: un’isola e una piattaforma offshore. Si è così potuto evidenziare l’importante contributo della risorsa ondosa per la continuità energetica e per la riduzione della necessità di accumulo. Inoltre, è stato concepito un metodo di supporto decisionale multicriteriale per la valutazione delle opzioni di riuso delle piattaforme offshore alla fine della loro vita operativa, come alternativa al decommissionamento, nell’ottica di una gestione sostenibile e della ottimizzazione dell’uso dello spazio marino. Sulla base dei criteri selezionati, l’inclusione di attività innovative come la produzione di energia da onda si è dimostrata essere rilevante per rendere vantaggioso il riuso rispetto al decommissionamento. Numerosi studi recenti hanno infatti sottolineato che, nell’ambito della “crescita blu”, i mercati come l’oil&gas, le attività offshore e le isole stimoleranno lo sviluppo di tecnologie innovative come lo sfruttamento dell’energia da onda, promuovendo la sperimentazione e fornendo un importante contributo all’avanzamento tecnico e alla commercializzazione.
Resumo:
An essential role in the global energy transition is attributed to Electric Vehicles (EVs) the energy for EV traction can be generated by renewable energy sources (RES), also at a local level through distributed power plants, such as photovoltaic (PV) systems. However, EV integration with electrical systems might not be straightforward. The intermittent RES, combined with the high and uncontrolled aggregate EV charging, require an evolution toward new planning and paradigms of energy systems. In this context, this work aims to provide a practical solution for EV charging integration in electrical systems with RES. A method for predicting the power required by an EV fleet at the charging hub (CH) is developed in this thesis. The proposed forecasting method considers the main parameters on which charging demand depends. The results of the EV charging forecasting method are deeply analyzed under different scenarios. To reduce the EV load intermittency, methods for managing the charging power of EVs are proposed. The main target was to provide Charging Management Systems (CMS) that modulate EV charging to optimize specific performance indicators such as system self-consumption, peak load reduction, and PV exploitation. Controlling the EV charging power to achieve specific optimization goals is also known as Smart Charging (SC). The proposed techniques are applied to real-world scenarios demonstrating performance improvements in using SC strategies. A viable alternative to maximize integration with intermittent RES generation is the integration of energy storage. Battery Energy Storage Systems (BESS) may be a buffer between peak load and RES production. A sizing algorithm for PV+BESS integration in EV charging hubs is provided. The sizing optimization aims to optimize the system's energy and economic performance. The results provide an overview of the optimal size that the PV+BESS plant should have to improve whole system performance in different scenarios.
Resumo:
With the aim of heading towards a more sustainable future, there has been a noticeable increase in the installation of Renewable Energy Sources (RES) in power systems in the latest years. Besides the evident environmental benefits, RES pose several technological challenges in terms of scheduling, operation, and control of transmission and distribution power networks. Therefore, it raised the necessity of developing smart grids, relying on suitable distributed measurement infrastructure, for instance, based on Phasor Measurement Units (PMUs). Not only are such devices able to estimate a phasor, but they can also provide time information which is essential for real-time monitoring. This Thesis falls within this context by analyzing the uncertainty requirements of PMUs in distribution and transmission applications. Concerning the latter, the reliability of PMU measurements during severe power system events is examined, whereas for the first, typical configurations of distribution networks are studied for the development of target uncertainties. The second part of the Thesis, instead, is dedicated to the application of PMUs in low-inertia power grids. The replacement of traditional synchronous machines with inertia-less RES is progressively reducing the overall system inertia, resulting in faster and more severe events. In this scenario, PMUs may play a vital role in spite of the fact that no standard requirements nor target uncertainties are yet available. This Thesis deeply investigates PMU-based applications, by proposing a new inertia index relying only on local measurements and evaluating their reliability in low-inertia scenarios. It also develops possible uncertainty intervals based on the electrical instrumentation currently used in power systems and assesses the interoperability with other devices before and after contingency events.
Resumo:
The European renewable energy directive 2009/28/EC (E.C. 2009) provides a legislative framework for reducing GHG emissions by 20%, while achieving a 20% share of energy from renewable sources by 2020. Perennial energy crops could significantly contribute to limit GHG emissions through replacing equivalent fossil fuels and by sequestering a considerable amount of carbon into the soil through the large amounts of belowground biomass produced. The objective of this study is to evaluate the effects of land use change that perennial energy crops have on croplands (switchgrass) and marginal grasslands (miscanthus). For that purpose above and belowground biomass, SOC variation and Net Ecosystem Exchange were evaluated after five years of growth. At aboveground level both crops produced high biomass under cropland conditions as well as under marginal soils. At belowground level they also produced large amounts of biomass, but no significant influences on SOC in the upper layer (0-30 cm) were found. This is probably because of the "priming effect" that caused fast carbon substitution. In switchgrass only it was found a significant SOC increase in deeper layers (30-60 cm), while in the whole soil profile (0-60 cm) SOC increased from 42 to 51 ha-1. However, the short experimental periods (for both switchgrass and miscanthus), in which land use change was evaluated, do not permit to determine the real capacity of perennial energy crops to accumulate SOC. In conclusion the large amounts of belowground biomass enhanced the SOC dynamic through the priming effect resulting in increased SOC in cropland but not in marginal grassland.
Resumo:
In recent years the need for the design of more sustainable processes and the development of alternative reaction routes to reduce the environmental impact of the chemical industry has gained vital importance. Main objectives especially regard the use of renewable raw materials, the exploitation of alternative energy sources, the design of inherently safe processes and of integrated reaction/separation technologies (e.g. microreactors and membranes), the process intensification, the reduction of waste and the development of new catalytic pathways. The present PhD thesis reports results derived during a three years research period at the School of Chemical Sciences of Alma Mater Studiorum-University of Bologna, Dept. of Industrial Chemistry and Materials (now Dept. of Industrial Chemistry “Toso Montanari”), under the supervision of Prof. Fabrizio Cavani (Catalytic Processes Development Group). Three research projects in the field of heterogeneous acid catalysis focused on potential industrial applications were carried out. The main project, regarding the conversion of lignocellulosic materials to produce monosaccharides (important intermediates for production of biofuels and bioplatform molecules) was financed and carried out in collaboration with the Italian oil company eni S.p.A. (Istituto eni Donegani-Research Center for non-Conventional Energies, Novara, Italy) The second and third academic projects dealt with the development of green chemical processes for fine chemicals manufacturing. In particular, (a) the condensation reaction between acetone and ammonia to give triacetoneamine (TAA), and (b) the Friedel-Crafts acylation of phenol with benzoic acid were investigated.
Resumo:
The energy harvesting research field has grown considerably in the last decade due to increasing interests in energy autonomous sensing systems, which require smart and efficient interfaces for extracting power from energy source and power management (PM) circuits. This thesis investigates the design trade-offs for minimizing the intrinsic power of PM circuits, in order to allow operation with very weak energy sources. For validation purposes, three different integrated power converter and PM circuits for energy harvesting applications are presented. They have been designed for nano-power operations and single-source converters can operate with input power lower than 1 μW. The first IC is a buck-boost converter for piezoelectric transducers (PZ) implementing Synchronous Electrical Charge Extraction (SECE), a non-linear energy extraction technique. Moreover, Residual Charge Inversion technique is exploited for extracting energy from PZ with weak and irregular excitations (i.e. lower voltage), and the implemented PM policy, named Two-Way Energy Storage, considerably reduces the start-up time of the converter, improving the overall conversion efficiency. The second proposed IC is a general-purpose buck-boost converter for low-voltage DC energy sources, up to 2.5 V. An ultra-low-power MPPT circuit has been designed in order to track variations of source power. Furthermore, a capacitive boost circuit has been included, allowing the converter start-up from a source voltage VDC0 = 223 mV. A nano-power programmable linear regulator is also included in order to provide a stable voltage to the load. The third IC implements an heterogeneous multisource buck-boost converter. It provides up to 9 independent input channels, of which 5 are specific for PZ (with SECE) and 4 for DC energy sources with MPPT. The inductor is shared among channels and an arbiter, designed with asynchronous logic to reduce the energy consumption, avoids simultaneous access to the buck-boost core, with a dynamic schedule based on source priority.
Resumo:
In the last decades the automotive sector has seen a technological revolution, due mainly to the more restrictive regulation, the newly introduced technologies and, as last, to the poor resources of fossil fuels remaining on Earth. Promising solution in vehicles’ propulsion are represented by alternative architectures and energy sources, for example fuel-cells and pure electric vehicles. The automotive transition to new and green vehicles is passing through the development of hybrid vehicles, that usually combine positive aspects of each technology. To fully exploit the powerful of hybrid vehicles, however, it is important to manage the powertrain’s degrees of freedom in the smartest way possible, otherwise hybridization would be worthless. To this aim, this dissertation is focused on the development of energy management strategies and predictive control functions. Such algorithms have the goal of increasing the powertrain overall efficiency and contextually increasing the driver safety. Such control algorithms have been applied to an axle-split Plug-in Hybrid Electric Vehicle with a complex architecture that allows more than one driving modes, including the pure electric one. The different energy management strategies investigated are mainly three: the vehicle baseline heuristic controller, in the following mentioned as rule-based controller, a sub-optimal controller that can include also predictive functionalities, referred to as Equivalent Consumption Minimization Strategy, and a vehicle global optimum control technique, called Dynamic Programming, also including the high-voltage battery thermal management. During this project, different modelling approaches have been applied to the powertrain, including Hardware-in-the-loop, and diverse powertrain high-level controllers have been developed and implemented, increasing at each step their complexity. It has been proven the potential of using sophisticated powertrain control techniques, and that the gainable benefits in terms of fuel economy are largely influenced by the chose energy management strategy, even considering the powerful vehicle investigated.
Resumo:
If we look back in time at the history of humanity, we can state that our generation is living an era of outstanding efficiency and progress because of globalization and global competition, even if this is resulting in the rapid depletion of energy sources and raw materials. The environmental impact of non-biodegradable plastic wastes is of increasing global concern: nowadays, imagining a world without synthetic plastics seems impossible, though their large-scale production and their extensive use have only spread since the end of the World War II. In recent years, the demand for sustainable materials has increased significantly and, with a view to circular economy, research has also focused on the enhancement and subsequent reuse of waste materials produced by industrial processing, intensive farming and the agricultural sector. Plastic polymers have been the most practical and economical solution for decades due to their low cost, prompt availability and excellent optical, mechanical and barrier properties. Biodegradable polymers could replace them in many applications, thus reducing the problems of traditional plastics disposability and the dependence on petroleum. Natural biopolymers are in fact characterized by a high biocompatibility and biodegradability and have already prompted research in the field of regenerative medicine. During my PhD, my goal was to use natural polymers from sustainable sources as raw materials to produce biomaterials, which are materials designed to interface with biological systems to evaluate, support or replace any tissue, organ, or function of the body. I focused on the use of the most abundant biopolymers in nature to produce biomaterials in the form of films, scaffolds and cements. After a complete characterization, the materials were proposed for suitable applications in different fields, from tissue engineering to cosmetics and food packaging. Some of the obtained results were published on international scientific and peer-reviewed journals.
Development of processes for the valorization of lignocellulosic biomass based on renewable energies
Resumo:
The world grapples with climate change from fossil fuel reliance, prompting Europe to pivot to renewable energy. Among renewables, biomass is a bioenergy and bio-carbon source, used to create high-value biomolecules, replacing fossil-based products. Alkyl levulinates, derived from biomass, hold promise as bio-additives and biofuels, especially via acid solvolysis of hexose sugars, necessitating further exploration. Alkyl levulinate's potential extends to converting into γ-valerolactone (GVL), a bio-solvent produced via hydrogenation with molecular-hydrogen. Hydrogen, a key reagent and energy carrier, aids renewable energy integration. This thesis delves into a biorefinery system study, aligning with sustainability goals, integrating biomass valorization, energy production, and hydrogen generation. It investigates optimizing technologies for butyl levulinate production and subsequent GVL hydrogenation. Sustainability remains pivotal, reflecting the global shift towards renewable and carbon bio-resources. The research initially focuses on experimenting with the optimal technology for producing butyl levulinate from biomass-derived hexose fructose. It examines the solvolysis process, investigating optimal conditions, kinetic modeling, and the impact of solvents on fructose conversion. The subsequent part concentrates on the technological aspect of hydrogenating butyl levulinate into GVL. It includes conceptual design, simulation, and optimization of the fructose-to-GVL process scheme based on process intensification. In the final part, the study applies the process to a real case study in Normandy, France, adapting it to local biomass availability and wind energy. It defines a methodology for designing and integrating the energy-supply system, evaluating different scenarios. Sustainability assessment using economic, environmental, and social indicators culminates in an overall sustainability index, indicating scenarios integrating the GVL biorefinery system with wind power and hydrogen energy storage as promising due to high profitability and reduced environmental impact. Sensitivity analyses validate the methodology's reliability, potentially extending to other technological systems.