45 resultados para Prato (Italy)
Resumo:
The primary objective of this thesis is to obtain a better understanding of the 3D velocity structure of the lithosphere in central Italy. To this end, I adopted the Spectral-Element Method to perform accurate numerical simulations of the complex wavefields generated by the 2009 Mw 6.3 L’Aquila event and by its foreshocks and aftershocks together with some additional events within our target region. For the mainshock, the source was represented by a finite fault and different models for central Italy, both 1D and 3D, were tested. Surface topography, attenuation and Moho discontinuity were also accounted for. Three-component synthetic waveforms were compared to the corresponding recorded data. The results of these analyses show that 3D models, including all the known structural heterogeneities in the region, are essential to accurately reproduce waveform propagation. They allow to capture features of the seismograms, mainly related to topography or to low wavespeed areas, and, combined with a finite fault model, result into a favorable match between data and synthetics for frequencies up to ~0.5 Hz. We also obtained peak ground velocity maps, that provide valuable information for seismic hazard assessment. The remaining differences between data and synthetics led us to take advantage of SEM combined with an adjoint method to iteratively improve the available 3D structure model for central Italy. A total of 63 events and 52 stations in the region were considered. We performed five iterations of the tomographic inversion, by calculating the misfit function gradient - necessary for the model update - from adjoint sensitivity kernels, constructed using only two simulations for each event. Our last updated model features a reduced traveltime misfit function and improved agreement between data and synthetics, although further iterations, as well as refined source solutions, are necessary to obtain a new reference 3D model for central Italy tomography.
Resumo:
The southern Apennines of Italy have been experienced several destructive earthquakes both in historic and recent times. The present day seismicity, characterized by small-to-moderate magnitude earthquakes, was used like a probe to obatin a deeper knowledge of the fault structures where the largest earthquakes occurred in the past. With the aim to infer a three dimensional seismic image both the problem of data quality and the selection of a reliable and robust tomographic inversion strategy have been faced. The data quality has been obtained to develop optimized procedures for the measurements of P- and S-wave arrival times, through the use of polarization filtering and to the application of a refined re-picking technique based on cross-correlation of waveforms. A technique of iterative tomographic inversion, linearized, damped combined with a strategy of multiscale inversion type has been adopted. The retrieved P-wave velocity model indicates the presence of a strong velocity variation along a direction orthogonal to the Apenninic chain. This variation defines two domains which are characterized by a relatively low and high velocity values. From the comparison between the inferred P-wave velocity model with a portion of a structural section available in literature, the high velocity body was correlated with the Apulia carbonatic platforms whereas the low velocity bodies was associated to the basinal deposits. The deduced Vp/Vs ratio shows that the ratio is lower than 1.8 in the shallower part of the model, while for depths ranging between 5 km and 12 km the ratio increases up to 2.1 in correspondence to the area of higher seismicity. This confirms that areas characterized by higher values are more prone to generate earthquakes as a response to the presence of fluids and higher pore-pressures.
Resumo:
The aim of this work was to show that refined analyses of background, low magnitude seismicity allow to delineate the main active faults and to accurately estimate the directions of the regional tectonic stress that characterize the Southern Apennines (Italy), a structurally complex area with high seismic potential. Thanks the presence in the area of an integrated dense and wide dynamic network, was possible to analyzed an high quality microearthquake data-set consisting of 1312 events that occurred from August 2005 to April 2011 by integrating the data recorded at 42 seismic stations of various networks. The refined seismicity location and focal mechanisms well delineate a system of NW-SE striking normal faults along the Apenninic chain and an approximately E-W oriented, strike-slip fault, transversely cutting the belt. The seismicity along the chain does not occur on a single fault but in a volume, delimited by the faults activated during the 1980 Irpinia M 6.9 earthquake, on sub-parallel predominant normal faults. Results show that the recent low magnitude earthquakes belongs to the background seismicity and they are likely generated along the major fault segments activated during the most recent earthquakes, suggesting that they are still active today thirty years after the mainshock occurrences. In this sense, this study gives a new perspective to the application of the high quality records of low magnitude background seismicity for the identification and characterization of active fault systems. The analysis of the stress tensor inversion provides two equivalent models to explain the microearthquake generation along both the NW-SE striking normal faults and the E- W oriented fault with a dominant dextral strike-slip motion, but having different geological interpretations. We suggest that the NW-SE-striking Africa-Eurasia convergence acts in the background of all these structures, playing a primary and unifying role in the seismotectonics of the whole region.
Resumo:
This thesis is based on the integration of traditional and innovative approaches aimed at improving the normal faults seimogenic identification and characterization, focusing mainly on slip-rate estimate as a measure of the fault activity. The L’Aquila Mw 6.3 April 6, 2009 earthquake causative fault, namely the Paganica - San Demetrio fault system (PSDFS), was used as a test site. We developed a multidisciplinary and scale‐based strategy consisting of paleoseismological investigations, detailed geomorphological and geological field studies, as well as shallow geophysical imaging and an innovative application of physical properties measurements. We produced a detailed geomorphological and geological map of the PSDFS, defining its tectonic style, arrangement, kinematics, extent, geometry and internal complexities. The PSDFS is a 19 km-long tectonic structure, characterized by a complex structural setting and arranged in two main sectors: the Paganica sector to the NW, characterized by a narrow deformation zone, and the San Demetrio sector to SE, where the strain is accommodated by several tectonic structures, exhuming and dissecting a wide Quaternary basin, suggesting the occurrence of strain migration through time. The integration of all the fault displacement data and age constraints (radiocarbon dating, optically stimulated luminescence (OSL) and tephrochronology) helped in calculating an average Quaternary slip-rate representative for the PSDFS of 0.27 - 0.48 mm/yr. On the basis of its length (ca. 20 km) and slip per event (up to 0.8 m) we also estimated a max expected Magnitude of 6.3-6.8 for this fault. All these topics have a significant implication in terms of surface faulting hazard in the area and may contribute also to the understanding of the PSDFS seismic behavior and of the local seismic hazard.
Resumo:
In many communities, supplying water for the people is a huge task and the fact that this essential service can be carried out by the private sector respecting the right to water, is a debated issue. This dissertation investigates the mechanisms through which a 'perceived rights violation' - which represents a specific form of perceived injustice which derives from the violation of absolute moral principles – can promote collective action. Indeed, literature on morality and collective action suggests that even if many people apparently sustain high moral principles (like human rights), only a minority decides to act in order to defend them. Taking advantage of the political situation in Italy, and the recent mobilization for "public water" we hypothesized that, because of its "sacred value", the perceived violation of the right to water facilitates identification with the social movement and activism. Through five studies adopting qualitative and quantitative methods, we confirmed our hypotheses demonstrating that the perceived violation of the right to water can sustain activism and it can influence vote intentions at the referendum for 'public water'. This path to collective action coexists with other 'classical' predictors of collective action, like instrumental factors (personal advantages, efficacy beliefs) and anger. The perceived rights violation can derive both from personal values (i.e. universalism) and external factors (i.e. a mobilization campaign). Furthermore, we demonstrated that it is possible to enhance the perceived violation of the right to water and anger through a specifically designed communication campaign. The final chapter summarizes the main findings and discusses the results, suggesting some innovative line of research for collective action literature.
Resumo:
This thesis examines the literature on local home bias, i.e. investor preference towards geographically nearby stocks, and investigates the role of firm’s visibility, profitability, and opacity in explaining such behavior. While firm’s visibility is expected to proxy for the behavioral root originating such a preference, firm’s profitability and opacity are expected to capture the informational one. I find that less visible, and more profitable and opaque firms, conditionally to the demand, benefit from being headquartered in regions characterized by a scarcity of listed firms (local supply of stocks). Specifically, research estimates suggest that firms headquartered in regions with a poor supply of stocks would be worth i) 11 percent more if non-visible, non-profitable and non-opaque; ii) 16 percent more if profitable; and iii) 28 percent more if both profitable and opaque. Overall, as these features are able to explain most, albeit not all, of the local home bias effect, I reasonably argue and then assess that most of the preference for local is determined by a successful attempt to exploit local information advantage (60 percent), while the rest is determined by a mere (irrational) feeling of familiarity with the local firm (40 percent). Several and significant methodological, theoretical, and practical implications come out.
Resumo:
Terrestrial radioactivity for most individual is the major contributor to the total dose and is mostly provided by 238U, 232Th and 40K radionuclides. In particular indoor radioactivity is principally due to 222Rn, a radioactive noble gas descendent of 238U, second cause of lung cancer after cigarettes smoking. Vulsini Volcanic District is a well known quaternary volcanic area located between the northern Latium and southern Tuscany (Central Italy). It is characterized by an high natural radiation background resulting from the high concentrations of 238U, 232Th and 40K in the volcanic products. In this context, subduction-related metasomatic enrichment of incompatible elements in the mantle source coupled with magma differentiation within the upper crust has given rise to U, Th and K enriched melts. Almost every ancient village and town located in this part of Italy has been built with volcanic rocks pertaining to the Vulsini Volcanic District. The radiological risk of living in this area has been estimated considering separately: a. the risk associated with buildings made of volcanic products and built on volcanic rock substrates b. the risk associated to soil characteristics. The former has been evaluated both using direct 222Rn indoor measurements and simulations of “standard rooms” built with the tuffs and lavas from the Vulsini Volcanic District investigated in this work. The latter has been carried out by using in situ measurements of 222Rn activity in the soil gases. A radon risk map for the Bolsena village has been developed using soil radon measurements integrating geological information. Data of airborne radioactivity in ambient aerosol at two elevated stations in Emilia Romagna (North Italy) under the influence of Fukushima plume have been collected, effective doses have been calculated and an extensive comparison between doses associated with artificial and natural sources in different area have been described and discussed.
Resumo:
The thesis aims at analysing the role of collective action as a viable alternative to the traditional forms of intervention in agriculture in order to encourage the provision of agri-environmental public goods. Which are the main benefits of collective action, in terms of effectiveness and efficiency, compared to traditional market or public intervention policies? What are the drivers that encourage farmers to participate into collective action? To what extent it is possible to incorporate collective aspects into policies aimed at providing agri-environmental public goods? With the objective of addressing these research questions, the thesis is articulated in two levels: a theoretical analysis on the role of collective action in the provision of public goods and a specific investigation of two local initiative,s were an approach collective management of agro-environmental resources was successfully implemented. The first case study concerns a project named “Custodians of the Territory”, developed by the local agency in Tuscany “Comunità Montana Media Valle del Serchio”, which settled for an agreement with local farmers for a collective provision of environmental services related to the hydro-geological management of the district. The second case study is related to the territorial agri-environmental agreement experimented in Valdaso (Marche), where local farmers have adopted integrated pest management practices collectively with the aim of reducing the environmental impact of their farming practices. The analysis of these initiatives, carried out through participatory methods (Rapid Rural Appraisal), allowed developing a theoretical discussion on the role of innovative tools (such as co-production and co-management) in the provision of agri-environmental public goods. The case studies also provided some recommendations on the government intervention and policies needed to promote successful collective action for the provision of agri-environmental public goods.
Resumo:
The primary goal of volcanological studies is to reconstruct the eruptive history of active volcanoes, by correlating and dating volcanic deposits, in order to depict a future scenario and determine the volcanic hazard of an area. However, alternative methods are necessary where the lack of outcrops, the deposit variability and discontinuity make the correlation difficult, and suitable materials for an accurate dating lack. In this thesis, paleomagnetism (a branch of Geophysics studying the remanent magnetization preserved in rocks) is used as a correlating and dating tool. The correlation is based on the assumption that coeval rocks record similar paleomagnetic directions; the dating relies upon the comparison between paleomagnetic directions recorded by rocks with the expected values from references Paleo-Secular Variation curves (PSV, the variation of the geomagnetic field along time). I first used paleomagnetism to refine the knowledge of the pre – 50 ka geologic history of the Pantelleria island (Strait of Sicily, Italy), by correlating five ignimbrites and two breccias deposits emplaced during that period. Since the use of the paleomagnetic dating is limited by the availability of PSV curves for the studied area, I firstly recovered both paleomagnetic directions and intensities (using a modified Thellier method) from radiocarbon dated lava flows in São Miguel (Azores Islands, Portugal), reconstructing the first PSV reference curve for the Atlantic Ocean for the last 3 ka. Afterwards, I applied paleomagnetism to unravel the chronology and characteristics of Holocene volcanic activity at Faial (Azores) where geochronological age constraints lack. I correlated scoria cones and lava flows yielded by the same eruption on the Capelo Peninsula and dated eruptive events (by comparing paleomagnetic directions with PSV from France and United Kingdom), finding that the volcanics exposed at the Capelo Peninsula are younger than previously believed, and entirely comprised in the last 4 ka.
Resumo:
We have developed a method for locating sources of volcanic tremor and applied it to a dataset recorded on Stromboli volcano before and after the onset of the February 27th 2007 effusive eruption. Volcanic tremor has attracted considerable attention by seismologists because of its potential value as a tool for forecasting eruptions and for better understanding the physical processes that occur inside active volcanoes. Commonly used methods to locate volcanic tremor sources are: 1) array techniques, 2) semblance based methods, 3) calculation of wave field amplitude. We have choosen the third approach, using a quantitative modeling of the seismic wavefield. For this purpose, we have calculated the Green Functions (GF) in the frequency domain with the Finite Element Method (FEM). We have used this method because it is well suited to solve elliptic problems, as the elastodynamics in the Fourier domain. The volcanic tremor source is located by determining the source function over a regular grid of points. The best fit point is choosen as the tremor source location. The source inversion is performed in the frequency domain, using only the wavefield amplitudes. We illustrate the method and its validation over a synthetic dataset. We show some preliminary results on the Stromboli dataset, evidencing temporal variations of the volcanic tremor sources.
Resumo:
The carbonate outcrops of the anticline of Monte Conero (Italy) were studied in order to characterize the geometry of the fractures and to establish their influence on the petrophysical properties (hydraulic conductivity) and on the vulnerability to pollution. The outcrops form an analog for a fractured aquifer and belong to the Maiolica Fm. and the Scaglia Rossa Fm. The geometrical properties of fractures such as orientation, length, spacing and aperture were collected and statistically analyzed. Five types of mechanical fractures were observed: veins, joints, stylolites, breccias and faults. The types of fractures are arranged in different sets and geometric assemblages which form fracture networks. In addition, the fractures were analyzed at the microscale using thin sections. The fracture age-relationships resulted similar to those observed at the outcrop scale, indicating that at least three geological episodes have occurred in Monte Conero. A conceptual model for fault development was based on the observations of veins and stylolites. The fracture sets were modelled by the code FracSim3D to generate fracture network models. The permeability of a breccia zone was estimated at microscale by and point counting and binary image methods, whereas at the outcrop scale with Oda’s method. Microstructure analysis revealed that only faults and breccias are potential pathways for fluid flow since all veins observed are filled with calcite. According this, three scenarios were designed to asses the vulnerability to pollution of the analogue aquifer: the first scenario considers the Monte Conero without fractures, second scenario with all observed systematic fractures and the third scenario with open veins, joints and faults/breccias. The fractures influence the carbonate aquifer by increasing its porosity and hydraulic conductivity. The vulnerability to pollution depends also on the presence of karst zones, detric zones and the material of the vadose zone.
Resumo:
Population growth in urban areas is a world-wide phenomenon. According to a recent United Nations report, over half of the world now lives in cities. Numerous health and environmental issues arise from this unprecedented urbanization. Recent studies have demonstrated the effectiveness of urban green spaces and the role they play in improving both the aesthetics and the quality of life of its residents. In particular, urban green spaces provide ecosystem services such as: urban air quality improvement by removing pollutants that can cause serious health problems, carbon storage, carbon sequestration and climate regulation through shading and evapotranspiration. Furthermore, epidemiological studies with controlled age, sex, marital and socio-economic status, have provided evidence of a positive relationship between green space and the life expectancy of senior citizens. However, there is little information on the role of public green spaces in mid-sized cities in northern Italy. To address this need, a study was conducted to assess the ecosystem services of urban green spaces in the city of Bolzano, South Tyrol, Italy. In particular, we quantified the cooling effect of urban trees and the hourly amount of pollution removed by the urban forest. The information was gathered using field data collected through local hourly air pollution readings, tree inventory and simulation models. During the study we quantified pollution removal for ozone, nitrogen dioxide, carbon monoxide and particulate matter (<10 microns). We estimated the above ground carbon stored and annually sequestered by the urban forest. Results have been compared to transportation CO2 emissions to determine the CO2 offset potential of urban streetscapes. Furthermore, we assessed commonly used methods for estimating carbon stored and sequestered by urban trees in the city of Bolzano. We also quantified ecosystem disservices such as hourly urban forest volatile organic compound emissions.
Resumo:
MFA and LCA methodologies were applied to analyse the anthropogenic aluminium cycle in Italy with focus on historical evolution of stocks and flows of the metal, embodied GHG emissions, and potentials from recycling to provide key features to Italy for prioritizing industrial policy toward low-carbon technologies and materials. Historical trend series were collected from 1947 to 2009 and balanced with data from production, manufacturing and waste management of aluminium-containing products, using a ‘top-down’ approach to quantify the contemporary in-use stock of the metal, and helping to identify ‘applications where aluminium is not yet being recycled to its full potential and to identify present and future recycling flows’. The MFA results were used as a basis for the LCA aimed at evaluating the carbon footprint evolution, from primary and electrical energy, the smelting process and the transportation, embodied in the Italian aluminium. A discussion about how the main factors, according to the Kaya Identity equation, they did influence the Italian GHG emissions pattern over time, and which are the levers to mitigate it, it has been also reported. The contemporary anthropogenic reservoirs of aluminium was estimated at about 320 kg per capita, mainly embedded within the transportation and building and construction sectors. Cumulative in-use stock represents approximately 11 years of supply at current usage rates (about 20 Mt versus 1.7 Mt/year), and it would imply a potential of about 160 Mt of CO2eq emissions savings. A discussion of criticality related to aluminium waste recovery from the transportation and the containers and packaging sectors was also included in the study, providing an example for how MFA and LCA may support decision-making at sectorial or regional level. The research constitutes the first attempt of an integrated approach between MFA and LCA applied to the aluminium cycle in Italy.
Resumo:
Throughout the alpine domain, shallow landslides represent a serious geologic hazard, often causing severe damages to infrastructures, private properties, natural resources and in the most catastrophic events, threatening human lives. Landslides are a major factor of landscape evolution in mountainous and hilly regions and represent a critical issue for mountainous land management, since they cause loss of pastoral lands. In several alpine contexts, shallow landsliding distribution is strictly connected to the presence and condition of vegetation on the slopes. With the aid of high-resolution satellite images, it's possible to divide automatically the mountainous territory in land cover classes, which contribute with different magnitude to the stability of the slopes. The aim of this research is to combine EO (Earth Observation) land cover maps with ground-based measurements of the land cover properties. In order to achieve this goal, a new procedure has been developed to automatically detect grass mantle degradation patterns from satellite images. Moreover, innovative surveying techniques and instruments are tested to measure in situ the shear strength of grass mantle and the geomechanical and geotechnical properties of these alpine soils. Shallow landsliding distribution is assessed with the aid of physically based models, which use the EO-based map to distribute the resistance parameters across the landscape.