24 resultados para Power Spectral-analysis


Relevância:

80.00% 80.00%

Publicador:

Resumo:

In the field of vibration qualification testing, with the popular Random Control mode of shakers, the specimen is excited by random vibrations typically set in the form of a Power Spectral Density (PSD). The corresponding signals are stationary and Gaussian, i.e. featuring a normal distribution. Conversely, real-life excitations are frequently non-Gaussian, exhibiting high peaks and/or burst signals and/or deterministic harmonic components. The so-called kurtosis is a parameter often used to statistically describe the occurrence and significance of high peak values in a random process. Since the similarity between test input profiles and real-life excitations is fundamental for qualification test reliability, some methods of kurtosis-control can be implemented to synthesize realistic (non-Gaussian) input signals. Durability tests are performed to check the resistance of a component to vibration-based fatigue damage. A procedure to synthesize test excitations which starts from measured data and preserves both the damage potential and the characteristics of the reference signals is desirable. The Fatigue Damage Spectrum (FDS) is generally used to quantify the fatigue damage potential associated with the excitation. The signal synthesized for accelerated durability tests (i.e. with a limited duration) must feature the same FDS as the reference vibration computed for the component’s expected lifetime. Current standard procedures are efficient in synthesizing signals in the form of a PSD, but prove inaccurate if reference data are non-Gaussian. This work presents novel algorithms for the synthesis of accelerated durability test profiles with prescribed FDS and a non-Gaussian distribution. An experimental campaign is conducted to validate the algorithms, by testing their accuracy, robustness, and practical effectiveness. Moreover, an original procedure is proposed for the estimation of the fatigue damage potential, aiming to minimize the computational time. The research is thus supposed to improve both the effectiveness and the efficiency of excitation profile synthesis for accelerated durability tests.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The purpose of the thesis is to develop a model for the functional behaviour of neurons in the primary motor cortex (M1) responsible for arm reaching movements. From Georgopoulos neurophysiological data, we provide a first bundle structure compatible with the hypercolumnar organization and with the position-direction selectivity of motor cortical cells. We then extend this model to encode the direction of arm movement which varies in time, as experimentally measured by Hatsopoulos by introducing the notion of movement fragments. We provide a sub-Riemannian model which describes the time-dependent directional selectivity of cells though integral curves of the geometric structure we set up. The sub-Riemannian distance we define allows to implement a grouping algorithm able to detect a set of hand motor trajectories. These paths, identified by using a kernel defined in terms of kinematic variables, are compatible with the motor primitives obtained from neurophysiological results by spectral analysis applied directly on cortical variables. In a second part of the work, we propose geodesics in this space as an alternative model of models for arm movement trajectories. We define a special class of curves, called admissible, on which to study the geodesics problem: we provide a connectivity property in terms of admissible paths and the existence of normal length minimizers. Admissible geodesics are used as a model of reaching paths, finding a first validation through Flash and Hogan minimizing trajectories.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The discovery of scaling relations between the mass of the SMBH and some key physical properties of the host galaxy suggests that the growth of the SMBH and that of the galaxy are coupled, with the AGN activity and the star-formation (SF) processes influencing each other. Although the mechanism of this co-evolution are still a matter of debate, all scenarios agree that a key phase of the co-evolution is represented by the obscured accretion phase. This phase is of the co-evolution is the least studied, mostly due to the challenge in detecting and recognizing such obscured AGN. My thesis aims at investigating the AGN-galaxy co-evolution paradigm by identifying and studying AGN in the obscured accretion phase. The study of obscured AGN is key for our understanding of the feedback processes and of the mutual influence of the SF and the AGN activity. Moreover, these obscured and elusive AGN are needed to explain the X-ray background spectrum and to reconcile the measurements and the theoretical prediction of the BH accretion rate density. In this thesis, we firstly investigate the synergies between IR and X-ray missions in detecting and characterizing AGN, with a particular focus on the most obscured ones. We exploited UV/optical emission lines to select high-redshift obscured AGN at the cosmic noon, where the highest SFR density and BH accretion rate density are expected. We provide X-ray spectral analysis and UV-to-far-IR SED-fitting. We show that our samples host a significant fraction of very obscured sources; many of these are highly accreting. Finally, we performe a thoughtful investigation of a galaxy at z~5 with unusual and peculiar features, that lead us to identify a second extremely young population of stars and hidden AGN activity.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Monitoring foetal health is a very important task in clinical practice to appropriately plan pregnancy management and delivery. In the third trimester of pregnancy, ultrasound cardiotocography is the most employed diagnostic technique: foetal heart rate and uterine contractions signals are simultaneously recorded and analysed in order to ascertain foetal health. Because ultrasound cardiotocography interpretation still lacks of complete reliability, new parameters and methods of interpretation, or alternative methodologies, are necessary to further support physicians’ decisions. To this aim, in this thesis, foetal phonocardiography and electrocardiography are considered as different techniques. Further, variability of foetal heart rate is thoroughly studied. Frequency components and their modifications can be analysed by applying a time-frequency approach, for a distinct understanding of the spectral components and their change over time related to foetal reactions to internal and external stimuli (such as uterine contractions). Such modifications of the power spectrum can be a sign of autonomic nervous system reactions and therefore represent additional, objective information about foetal reactivity and health. However, some limits of ultrasonic cardiotocography still remain, such as in long-term foetal surveillance, which is often recommendable mainly in risky pregnancies. In these cases, the fully non-invasive acoustic recording, foetal phonocardiography, through maternal abdomen, represents a valuable alternative to the ultrasonic cardiotocography. Unfortunately, the so recorded foetal heart sound signal is heavily loaded by noise, thus the determination of the foetal heart rate raises serious signal processing issues. A new algorithm for foetal heart rate estimation from foetal phonocardiographic recordings is presented in this thesis. Different filtering and enhancement techniques, to enhance the first foetal heart sounds, were applied, so that different signal processing techniques were implemented, evaluated and compared, by identifying the strategy characterized on average by the best results. In particular, phonocardiographic signals were recorded simultaneously to ultrasonic cardiotocographic signals in order to compare the two foetal heart rate series (the one estimated by the developed algorithm and the other provided by cardiotocographic device). The algorithm performances were tested on phonocardiographic signals recorded on pregnant women, showing reliable foetal heart rate signals, very close to the ultrasound cardiotocographic recordings, considered as reference. The algorithm was also tested by using a foetal phonocardiographic recording simulator developed and presented in this research thesis. The target was to provide a software for simulating recordings relative to different foetal conditions and recordings situations and to use it as a test tool for comparing and assessing different foetal heart rate extraction algorithms. Since there are few studies about foetal heart sounds time characteristics and frequency content and the available literature is poor and not rigorous in this area, a data collection pilot study was also conducted with the purpose of specifically characterising both foetal and maternal heart sounds. Finally, in this thesis, the use of foetal phonocardiographic and electrocardiographic methodology and their combination, are presented in order to detect foetal heart rate and other functioning anomalies. The developed methodologies, suitable for longer-term assessment, were able to detect heart beat events correctly, such as first and second heart sounds and QRS waves. The detection of such events provides reliable measures of foetal heart rate, potentially information about measurement of the systolic time intervals and foetus circulatory impedance.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This thesis is focused on Smart Grid applications in medium voltage distribution networks. For the development of new applications it appears useful the availability of simulation tools able to model dynamic behavior of both the power system and the communication network. Such a co-simulation environment would allow the assessment of the feasibility of using a given network technology to support communication-based Smart Grid control schemes on an existing segment of the electrical grid and to determine the range of control schemes that different communications technologies can support. For this reason, is presented a co-simulation platform that has been built by linking the Electromagnetic Transients Program Simulator (EMTP v3.0) with a Telecommunication Network Simulator (OPNET-Riverbed v18.0). The simulator is used to design and analyze a coordinate use of Distributed Energy Resources (DERs) for the voltage/var control (VVC) in distribution network. This thesis is focused control structure based on the use of phase measurement units (PMUs). In order to limit the required reinforcements of the communication infrastructures currently adopted by Distribution Network Operators (DNOs), the study is focused on leader-less MAS schemes that do not assign special coordinating rules to specific agents. Leader-less MAS are expected to produce more uniform communication traffic than centralized approaches that include a moderator agent. Moreover, leader-less MAS are expected to be less affected by limitations and constraint of some communication links. The developed co-simulator has allowed the definition of specific countermeasures against the limitations of the communication network, with particular reference to the latency and loss and information, for both the case of wired and wireless communication networks. Moreover, the co-simulation platform has bee also coupled with a mobility simulator in order to study specific countermeasures against the negative effects on the medium voltage/current distribution network caused by the concurrent connection of electric vehicles.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This thesis provides a necessary and sufficient condition for asymptotic efficiency of a nonparametric estimator of the generalised autocovariance function of a Gaussian stationary random process. The generalised autocovariance function is the inverse Fourier transform of a power transformation of the spectral density, and encompasses the traditional and inverse autocovariance functions. Its nonparametric estimator is based on the inverse discrete Fourier transform of the same power transformation of the pooled periodogram. The general result is then applied to the class of Gaussian stationary ARMA processes and its implications are discussed. We illustrate that for a class of contrast functionals and spectral densities, the minimum contrast estimator of the spectral density satisfies a Yule-Walker system of equations in the generalised autocovariance estimator. Selection of the pooling parameter, which characterizes the nonparametric estimator of the generalised autocovariance, controlling its resolution, is addressed by using a multiplicative periodogram bootstrap to estimate the finite-sample distribution of the estimator. A multivariate extension of recently introduced spectral models for univariate time series is considered, and an algorithm for the coefficients of a power transformation of matrix polynomials is derived, which allows to obtain the Wold coefficients from the matrix coefficients characterizing the generalised matrix cepstral models. This algorithm also allows the definition of the matrix variance profile, providing important quantities for vector time series analysis. A nonparametric estimator based on a transformation of the smoothed periodogram is proposed for estimation of the matrix variance profile.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

A robust and well-distributed backbone charging network is the priority to ensure widespread electrification of road transport, providing a driving experience similar to that of internal combustion engine vehicles. International standards set multiple technical targets for on-board and off-board electric vehicle chargers; output voltage levels, harmonic emissions, and isolation requirements strongly influence the design of power converters. Additionally, smart-grid services such as vehicle-to-grid and vehicle-to-vehicle require the implementation of bi-directional stages that inevitably increase system complexity and component count. To face these design challenges, the present thesis provides a rigorous analysis of four-leg and split-capacitor three-phase four-wire active front-end topologies focusing on the harmonic description under different modulation techniques and conditions. The resulting analytical formulation paves the way for converter performance improvements while maintaining regulatory constraints and technical requirements under control. Specifically, split-capacitor inverter current ripple was characterized as providing closed-form formulations valid for every sub-case ranging from synchronous to interleaved PWM. Outcomes are the base for a novel variable switching PWM technique capable of mediating harmonic content limitation and switching loss reduction. A similar analysis is proposed for four-leg inverters with a broad range of continuous and discontinuous PWM modulations. The general superiority of discontinuous PWM modulation in reducing switching losses and limiting harmonic emission was demonstrated. Developments are realized through a parametric description of the neutral wire inductor. Finally, a novel class of integrated isolated converter topologies is proposed aiming at the neutral wire delivery without employing extra switching components rather than the one already available in typical three-phase inverter and dual-active-bridge back-to-back configurations. The fourth leg was integrated inside the dual-active-bridge input bridge providing relevant component count savings. A novel modified single-phase-shift modulation technique was developed to ensure a seamless transition between working conditions like voltage level and power factor. Several simulations and experiments validate the outcomes.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In the frame of inductive power transfer (IPT) systems, arrays of magnetically coupled resonators have received increasing attention as they are cheap and versatile due to their simple structure. They consist of magnetically coupled coils, which resonate with their self-capacitance or lumped capacitive networks. Of great industrial interest are planar resonator arrays used to power a receiver that can be placed at any position above the array. A thorough circuit analysis has been carried out, first starting from traditional two-coil IPT devices. Then, resonator arrays have been introduced, with particular attention to the case of arrays with a receiver. To evaluate the system performance, a circuit model based on original analytical formulas has been developed and experimentally validated. The results of the analysis also led to the definition of a new doubly-fed array configuration with a receiver that can be placed above it at any position. A suitable control strategy aimed at maximising the transmitted power and the efficiency has been also proposed. The study of the array currents has been carried out resorting to the theory of magneto-inductive waves, allowing useful insight to be highlighted. The analysis has been completed with a numerical and experimental study on the magnetic field distribution originating from the array. Furthermore, an application of the resonator array as a position sensor has been investigated. The position of the receiver is estimated through the measurement of the array input impedance, for which an original analytical expression has been also obtained. The application of this sensing technique in an automotive dynamic IPT system has been discussed. The thesis concludes with an evaluation of the possible applications of two-dimensional resonator arrays in IPT systems. These devices can be used to improve system efficiency and transmitted power, as well as for magnetic field shielding.