19 resultados para Patologia molecular


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Immune checkpoint inhibitors (ICI) that target PD-1/PD-L1 have recently emerged as an integral component of front-line treatment in metastatic NSCLC patients. The PD-1 inhibitor pembrolizumab is approved as monotherapy for advanced NSCLC with a PD-L1 tumor proportion score (TPS) of ≥1% and in combination with platinum doublet chemotherapy regardless of PD-L1 expression level. However, responses to either regimen occur in only a minority of cases, and PD-L1 TPS is limited as a biomarker in predicting whether a cancer will respond to PD-1 inhibition alone or would be more likely to benefit from PD-1 inhibition plus chemotherapy. Additional biomarkers of immunotherapy efficacy, such as tumor mutational burden (TMB), have not been incorporated into routine clinical practice for treatment selection. The identification of patients who have the greatest likelihood of responding to immunotherapies is critical for guiding treatment decisions. IN addition, early indicators of response could theoretically prevent patients from staying on an ineffective therapy where they might experience complications due to disease progression or develop toxicities from unnecessary exposure to an inactive agent. The aim of this research project is to investigate the clinicopathologic and molecular determinant of response/resistance to the currently available immune checkpoint inhibitors, in order to identify therapeutic vulnerabilities that can be exploited to improve the clinical outcomes of patients with advanced NSCLC.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Ewing sarcoma (EWS) and CIC-DUX4 sarcoma (CDS) are pediatric fusion gene-driven tumors of mesenchymal origin characterized by an extremely stable genome and limited clinical solutions. Post-transcriptional regulatory mechanisms are crucial for understanding the development of this class of tumors. RNA binding proteins (RBPs) play a crucial role in the aggressiveness of these tumors. Numerous RBP families are dysregulated in cancer, including IGF2BPs. Among these, IGF2BP3 is a negative prognostic factor in EWS because it promotes cell growth, chemoresistence, and induces the metastatic process. Based on preliminary RNA sequencing data from clinical samples of EWS vs CDS patients, three major axes that are more expressed in CDS have been identified, two of which are dissected in this PhD work. The first involves the transcription factor HMGA2, IGF2BP2-3, and IGF2; the other involves the ephrin receptor system, particularly EphA2. EphA2 is involved in numerous cellular functions during embryonic stages, and its increased expression in adult tissues is often associated with pathological conditions. In tumors, its role is controversial because it can be associated with both pro- and anti-tumoral mechanisms. In EWS, it has been shown to play a role in promoting cell migration and neoangiogenesis. Our study has confirmed that the HMGA2/IGF2BPs/IGF2 axis contributes to CDS malignancy, and Akt hyperactivation has a strong impact on migration. Using loss/gain of function models for EphA2, we confirmed that it is a substrate of Akt, and Akt hyperactivation in CDS triggers ligand-independent activation of EphA2 through phosphorylation of S897. Moreover, the combination of Trabectedin and NVP/BEZ235 partially inhibits Akt/mTOR activation, resulting in reduced tumor growth in vivo. Inhibition of EphA2 through ALWII 41_27 significantly reduces migration in vitro. The project aim is the identification of target molecules in CDS that can distinguish it from EWS and thus develop new targeted therapeutic strategies.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Mucosal melanoma of the head and neck region (MM-H&N) is a rare disease, characterized by a poor prognosis and limited therapeutic strategies, especially regarding targeted therapy (lower rate of targetable mutations compared to cutaneous melanoma) and immunotherapy (lack of diagnostic tools able to predict the response). Meanwhile, bright-field multiplex immunohistochemistry (BF-mIHC) is emerging as a promising tool for characterizing tumor microenvironment (TME) and predicting response to immunotherapy in several tumors, including melanoma. This PhD project aims to develop a BF-mIHC protocol to evaluate the TME in MM-H&N, analyze the correlation between immune markers/immune profiles and MM-H&N features (clinicopathologic and molecular), and find new biomarkers useful for prognostic-therapeutic stratification of these patients. Specific aims are: (I) describe the clinicopathological features of MM-H&N; (II) analyze the molecular status of MM-H&N and correlate it with the clinicopathological features; (III) analyze the molecular status of multiple specimens from the same patient to verify whether molecular heterogeneity of MM-H&N could affect the results with relevant prognostic-therapeutic implications; (IV) develop a BF-mIHC protocol to study TME in MM-H&N; (V) analyze the correlation between immune markers/immune profiles and MM-H&N features (clinicopathologic and molecular) to test whether BF-mIHC could be a promising tool for prognostic-therapeutic characterization of these patients.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The treatment of metastatic castration-resistant prostate cancer (mCRPC) is currently characterized by several drugs with different mechanisms of action, such as new generation hormonal agents (abiraterone, enzalutamide), chemotherapy (docetaxel, cabazitaxel), PARP inhibitors (olaparib) and radiometabolic therapies (radium-223, LuPSMA). There is an urgent need to identify biomarkers to guide personalized therapy in mCRPC. In recent years, the status of androgen receptor (AR) gene detected in liquid biopsy has been associated with outcomes in patients treated with abiraterone or enzalutamide. More recently, plasma tumor DNA (ptDNA) and its changes during treatment have been identified as early indicators of response to anticancer treatments. Recent works also suggested a potential role of tumor-related metabolic parameters of 18Fluoro-Choline Positron Emission Tomography (F18CH-PET)-computed tomography (CT) as a prognostic tool in mCRCP. Other clinical features, such as the presence of visceral metastases, have been correlated with outcome in mCRPC patients. Recent studies conducted by our research group have designed and validated a prognostic model based on the combination of molecular characteristics (ptDNA levels), metabolic features found in basal FCH PET scans (metabolic tumor volume values, MTV), clinical parameters (absence or presence of visceral metastases), and laboratory tests (serum lactate dehydrogenase levels, LDH). Within this PhD project, 30 patients affected by mCRPC, pre-treated with abiraterone or enzalutamide, candidate for taxane-based treatments (docetaxel or cabazitaxel), have been prospectively evaluated. The prognostic model previously described was applied to this population, to interrogate its prognostic power in a more advanced cohort of patients, resulting in a further external validation of the tool.