20 resultados para Online services using open-source NLP tools


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The innovation in several industrial sectors has been recently characterized by the need for reducing the operative temperature either for economic or environmental related aspects. Promising technological solutions require the acquisition of fundamental-based knowledge to produce safe and robust systems. In this sense, reactive systems often represent the bottleneck. For these reasons, this work was focused on the integration of chemical (i.e., detailed kinetic mechanism) and physical (i.e., computational fluid dynamics) models. A theoretical-based kinetic mechanism mimicking the behaviour of oxygenated fuels and their intermediates under oxidative conditions in a wide range of temperature and pressure was developed. Its validity was tested against experimental data collected in this work by using the heat flux burner, as well as measurements retrieved from the current literature. Besides, estimations deriving from existing models considered as the benchmark in the combustion field were compared with the newly generated mechanism. The latter was found to be the most accurate for the investigated conditions and fuels. Most influential species and reactions on the combustion of butyl acetate were identified. The corresponding thermodynamic parameter and rate coefficients were quantified through ab initio calculations. A reduced detailed kinetic mechanism was produced and implemented in an open-source computational fluid dynamics model to characterize pool fires caused by the accidental release of aviation fuel and liquefied natural gas, at first. Eventually, partial oxidation processes involving light alkenes were optimized following the quick, fair, and smoot (QFS) paradigm. The proposed procedure represents a comprehensive and multidisciplinary approach for the construction and validation of accurate models, allowing for the characterization of developing industrial sectors and techniques.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This Thesis is composed of a collection of works written in the period 2019-2022, whose aim is to find methodologies of Artificial Intelligence (AI) and Machine Learning to detect and classify patterns and rules in argumentative and legal texts. We define our approach “hybrid”, since we aimed at designing hybrid combinations of symbolic and sub-symbolic AI, involving both “top-down” structured knowledge and “bottom-up” data-driven knowledge. A first group of works is dedicated to the classification of argumentative patterns. Following the Waltonian model of argument and the related theory of Argumentation Schemes, these works focused on the detection of argumentative support and opposition, showing that argumentative evidences can be classified at fine-grained levels without resorting to highly engineered features. To show this, our methods involved not only traditional approaches such as TFIDF, but also some novel methods based on Tree Kernel algorithms. After the encouraging results of this first phase, we explored the use of a some emerging methodologies promoted by actors like Google, which have deeply changed NLP since 2018-19 — i.e., Transfer Learning and language models. These new methodologies markedly improved our previous results, providing us with best-performing NLP tools. Using Transfer Learning, we also performed a Sequence Labelling task to recognize the exact span of argumentative components (i.e., claims and premises), thus connecting portions of natural language to portions of arguments (i.e., to the logical-inferential dimension). The last part of our work was finally dedicated to the employment of Transfer Learning methods for the detection of rules and deontic modalities. In this case, we explored a hybrid approach which combines structured knowledge coming from two LegalXML formats (i.e., Akoma Ntoso and LegalRuleML) with sub-symbolic knowledge coming from pre-trained (and then fine-tuned) neural architectures.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Belt and Road Initiative (BRI) is a project launched by the Chinese Government whose main goal is to connect more than 65 countries in Asia, Europe, Africa and Oceania developing infrastructures and facilities. To support the prevention or mitigation of landslide hazards, which may affect the mainland infrastructures of BRI, a landslide susceptibility analysis in the countries involved has been carried out. Due to the large study area, the analysis has been carried out using a multi-scale approach which consists of mapping susceptibility firstly at continental scale, and then at national scale. The study area selected for the continental assessment is the south-Asia, where a pixel-based landslide susceptibility map has been carried out using the Weight of Evidence method and validated by Receiving Operating Characteristic (ROC) curves. Then, we selected the regions of west Tajikistan and north-east India to be investigated at national scale. Data scarcity is a common condition for many countries involved into the Initiative. Therefore in addition to the landslide susceptibility assessment of west Tajikistan, which has been conducted using a Generalized Additive Model and validated by ROC curves, we have examined, in the same study area, the effect of incomplete landslide dataset on the prediction capacity of statistical models. The entire PhD research activity has been conducted using only open data and open-source software. In this context, to support the analysis of the last years an open-source plugin for QGIS has been implemented. The SZ-tool allows the user to make susceptibility assessments from the data preprocessing, susceptibility mapping, to the final classification. All the output data of the analysis conducted are freely available and downloadable. This text describes the research activity of the last three years. Each chapter reports the text of the articles published in international scientific journal during the PhD.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The General Data Protection Regulation (GDPR) has been designed to help promote a view in favor of the interests of individuals instead of large corporations. However, there is the need of more dedicated technologies that can help companies comply with GDPR while enabling people to exercise their rights. We argue that such a dedicated solution must address two main issues: the need for more transparency towards individuals regarding the management of their personal information and their often hindered ability to access and make interoperable personal data in a way that the exercise of one's rights would result in straightforward. We aim to provide a system that helps to push personal data management towards the individual's control, i.e., a personal information management system (PIMS). By using distributed storage and decentralized computing networks to control online services, users' personal information could be shifted towards those directly concerned, i.e., the data subjects. The use of Distributed Ledger Technologies (DLTs) and Decentralized File Storage (DFS) as an implementation of decentralized systems is of paramount importance in this case. The structure of this dissertation follows an incremental approach to describing a set of decentralized systems and models that revolves around personal data and their subjects. Each chapter of this dissertation builds up the previous one and discusses the technical implementation of a system and its relation with the corresponding regulations. We refer to the EU regulatory framework, including GDPR, eIDAS, and Data Governance Act, to build our final system architecture's functional and non-functional drivers. In our PIMS design, personal data is kept in a Personal Data Space (PDS) consisting of encrypted personal data referring to the subject stored in a DFS. On top of that, a network of authorization servers acts as a data intermediary to provide access to potential data recipients through smart contracts.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The evolution of modern and increasingly sensitive image sensors, the increasingly compact design of the cameras, and the recent emergence of low-cost cameras allowed the Underwater Photogrammetry to become an infallible and irreplaceable technique used to estimate the structure of the seabed with high accuracy. Within this context, the main topic of this work is the Underwater Photogrammetry from a geomatic point of view and all the issues associated with its implementation, in particular with the support of Unmanned Underwater Vehicles. Questions such as: how does the technique work, what is needed to deal with a proper survey, what tools are available to apply this technique, and how to resolve uncertainties in measurement will be the subject of this thesis. The study conducted can be divided into two major parts: one devoted to several ad-hoc surveys and tests, thus a practical part, another supported by the bibliographical research. However the main contributions are related to the experimental section, in which two practical case studies are carried out in order to improve the quality of the underwater survey of some calibration platforms. The results obtained from these two experiments showed that, the refractive effects due to water and underwater housing can be compensated by the distortion coefficients in the camera model, but if the aim is to achieve high accuracy then a model that takes into account the configuration of the underwater housing, based on ray tracing, must also be coupled. The major contributions that this work brought are: an overview of the practical issues when performing surveys exploiting an UUV prototype, a method to reach a reliable accuracy in the 3D reconstructions without the use of an underwater local geodetic network, a guide for who addresses underwater photogrammetry topics for the first time, and the use of open-source environments.