18 resultados para NEUTRINO OSCILLATION EXPERIMENTS


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The thesis describes the implementation of a calibration, format-translation and data conditioning software for radiometric tracking data of deep-space spacecraft. All of the available propagation-media noise rejection techniques available as features in the code are covered in their mathematical formulations, performance and software implementations. Some techniques are retrieved from literature and current state of the art, while other algorithms have been conceived ex novo. All of the three typical deep-space refractive environments (solar plasma, ionosphere, troposphere) are dealt with by employing specific subroutines. Specific attention has been reserved to the GNSS-based tropospheric path delay calibration subroutine, since it is the most bulky module of the software suite, in terms of both the sheer number of lines of code, and development time. The software is currently in its final stage of development and once completed will serve as a pre-processing stage for orbit determination codes. Calibration of transmission-media noise sources in radiometric observables proved to be an essential operation to be performed of radiometric data in order to meet the more and more demanding error budget requirements of modern deep-space missions. A completely autonomous and all-around propagation-media calibration software is a novelty in orbit determination, although standalone codes are currently employed by ESA and NASA. The described S/W is planned to be compatible with the current standards for tropospheric noise calibration used by both these agencies like the AMC, TSAC and ESA IFMS weather data, and it natively works with the Tracking Data Message file format (TDM) adopted by CCSDS as standard aimed to promote and simplify inter-agency collaboration.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This thesis describes the developments of new models and toolkits for the orbit determination codes to support and improve the precise radio tracking experiments of the Cassini-Huygens mission, an interplanetary mission to study the Saturn system. The core of the orbit determination process is the comparison between observed observables and computed observables. Disturbances in either the observed or computed observables degrades the orbit determination process. Chapter 2 describes a detailed study of the numerical errors in the Doppler observables computed by NASA's ODP and MONTE, and ESA's AMFIN. A mathematical model of the numerical noise was developed and successfully validated analyzing against the Doppler observables computed by the ODP and MONTE, with typical relative errors smaller than 10%. The numerical noise proved to be, in general, an important source of noise in the orbit determination process and, in some conditions, it may becomes the dominant noise source. Three different approaches to reduce the numerical noise were proposed. Chapter 3 describes the development of the multiarc library, which allows to perform a multi-arc orbit determination with MONTE. The library was developed during the analysis of the Cassini radio science gravity experiments of the Saturn's satellite Rhea. Chapter 4 presents the estimation of the Rhea's gravity field obtained from a joint multi-arc analysis of Cassini R1 and R4 fly-bys, describing in details the spacecraft dynamical model used, the data selection and calibration procedure, and the analysis method followed. In particular, the approach of estimating the full unconstrained quadrupole gravity field was followed, obtaining a solution statistically not compatible with the condition of hydrostatic equilibrium. The solution proved to be stable and reliable. The normalized moment of inertia is in the range 0.37-0.4 indicating that Rhea's may be almost homogeneous, or at least characterized by a small degree of differentiation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The thesis comprises three essays that use experimental methods, one about other-regarding motivations in economic behavior and the others on pro-social behavior in two environmental economics problems. The first chapter studies how the expectations of the others and the concern to maintain a balance between effort exerted and rewards obtained interact in shaping the behavior in a modified dictator game. We find that dictators condition their choices on recipients' expectations only when there is a high probability that the the recipient will not be compensated for her effort. Otherwise, dictators tend to balance the efforts and rewards of the recipients, irrespective of the recipients' expectations. In the second chapter, I investigate the problem of local opposition to large public projects (e.g. landfills, incinerators, etc.). In particular, the experiment shows how the uncertainty about the project's quality makes the community living in the host site skeptical about the project. I also test whether side-transfers and costly information disclosure can help to increase the efficiency. Both tools succesfully make the host more willing to accept the project, but they lead to the realization of different types of projects. The last chapter is an experiment on climate negotiations. To avoid the global warming, countries are called to cooperate in the abatement of their emissions. We study whether the dynamic aspect of the climate change makes cooperation across countries behaviorally more difficult. We also consider inequality across countries as a possible factor that hinders international cooperation.