20 resultados para Multi-cicle, Expectation, and Conditional Estimation Method


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The evaluation of chronic activity of the hypothalamic-pituitary-adrenal (HPA) axis is critical for determining the impact of chronic stressful situations. The potential use of hair glucocorticoids as a non-invasive, retrospective, biomarker of long term HPA activity is of great interest, and it is gaining acceptance in humans and animals. However, there are still no studies in literature examining hair cortisol concentration in pigs and corticosterone concentration in laboratory rodents. Therefore, we developed and validated, for the first time, a method for measuring hair glucocorticoids concentration in commercial sows and in Sprague-Dawley rats. Our preliminary data demonstrated: 1) a validated and specific washing protocol and extraction assay method with a good sensitivity in both species; 2) the effect of the reproductive phase, housing conditions and seasonality on hair cortisol concentration in sows; 3) similar hair corticosterone concentration in male and female rats; 4) elevated hair corticosterone concentration in response to chronic stress manipulations and chronic ACTH administration, demonstrating that hair provides a good direct index of HPA activity over long periods than other indirect parameters, such adrenal or thymus weight. From these results we believe that this new non-invasive tool needs to be applied to better characterize the overall impact in livestock animals and in laboratory rodents of chronic stressful situations that negatively affect animals welfare. Nevertheless, further studies are needed to improve this methodology and maybe to develop animal models for chronic stress of high interest and translational value in human medicine.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This thesis describes the developments of new models and toolkits for the orbit determination codes to support and improve the precise radio tracking experiments of the Cassini-Huygens mission, an interplanetary mission to study the Saturn system. The core of the orbit determination process is the comparison between observed observables and computed observables. Disturbances in either the observed or computed observables degrades the orbit determination process. Chapter 2 describes a detailed study of the numerical errors in the Doppler observables computed by NASA's ODP and MONTE, and ESA's AMFIN. A mathematical model of the numerical noise was developed and successfully validated analyzing against the Doppler observables computed by the ODP and MONTE, with typical relative errors smaller than 10%. The numerical noise proved to be, in general, an important source of noise in the orbit determination process and, in some conditions, it may becomes the dominant noise source. Three different approaches to reduce the numerical noise were proposed. Chapter 3 describes the development of the multiarc library, which allows to perform a multi-arc orbit determination with MONTE. The library was developed during the analysis of the Cassini radio science gravity experiments of the Saturn's satellite Rhea. Chapter 4 presents the estimation of the Rhea's gravity field obtained from a joint multi-arc analysis of Cassini R1 and R4 fly-bys, describing in details the spacecraft dynamical model used, the data selection and calibration procedure, and the analysis method followed. In particular, the approach of estimating the full unconstrained quadrupole gravity field was followed, obtaining a solution statistically not compatible with the condition of hydrostatic equilibrium. The solution proved to be stable and reliable. The normalized moment of inertia is in the range 0.37-0.4 indicating that Rhea's may be almost homogeneous, or at least characterized by a small degree of differentiation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Nowadays, technological advancements have brought industry and research towards the automation of various processes. Automation brings a reduction in costs and an improvement in product quality. For this reason, companies are pushing research to investigate new technologies. The agriculture industry has always looked towards automating various processes, from product processing to storage. In the last years, the automation of harvest and cultivation phases also has become attractive, pushed by the advancement of autonomous driving. Nevertheless, ADAS systems are not enough. Merging different technologies will be the solution to obtain total automation of agriculture processes. For example, sensors that estimate products' physical and chemical properties can be used to evaluate the maturation level of fruit. Therefore, the fusion of these technologies has a key role in industrial process automation. In this dissertation, ADAS systems and sensors for precision agriculture will be both treated. Several measurement procedures for characterizing commercial 3D LiDARs will be proposed and tested to cope with the growing need for comparison tools. Axial errors and transversal errors have been investigated. Moreover, a measurement method and setup for evaluating the fog effect on 3D LiDARs will be proposed. Each presented measurement procedure has been tested. The obtained results highlight the versatility and the goodness of the proposed approaches. Regarding the precision agriculture sensors, a measurement approach for the Moisture Content and density estimation of crop directly on the field is presented. The approach regards the employment of a Near Infrared spectrometer jointly with Partial Least Square statistical analysis. The approach and the model will be described together with a first laboratory prototype used to evaluate the NIRS approach. Finally, a prototype for on the field analysis is realized and tested. The test results are promising, evidencing that the proposed approach is suitable for Moisture Content and density estimation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The challenges of the current global food systems are often framed around feeding the world's growing population while meeting sustainable development for future generations. Globalization has brought to a fragmentation of food spaces, leading to a flexible and mutable supply chain. This poses a major challenge to food and nutrition security, affecting also rural-urban dynamics in territories. Furthermore, the recent crises have highlighted the vulnerability to shocks and disruptions of the food systems and the eco-system due to the intensive management of natural, human and economic capital. Hence, a sustainable and resilient transition of the food systems is required through a multi-faceted approach that tackles the causes of unsustainability and promotes sustainable practices at all levels of the food system. In this respect, a territorial approach becomes a relevant entry point of analysis for the food system’s multifunctionality and can support the evaluation of sustainability by quantifying impacts associated with quantitative methods and understanding the territorial responsibility of different actors with qualitative ones. Against this background the present research aims to i) investigate the environmental, costing and social indicators suitable for a scoring system able to measure the integrated sustainability performance of food initiatives within the City/Region territorial context; ii) develop a territorial assessment framework to measure sustainability impacts of agricultural systems; and iii) define an integrated methodology to match production and consumption at a territorial level to foster a long-term vision of short food supply chains. From a methodological perspective, the research proposes a mixed quantitative and qualitative research method. The outcomes provide an in-depth view into the environmental and socio-economic impacts of food systems at the territorial level, investigating possible indicators, frameworks, and business strategies to foster their future sustainable development.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the field of educational and psychological measurement, the shift from paper-based to computerized tests has become a prominent trend in recent years. Computerized tests allow for more complex and personalized test administration procedures, like Computerized Adaptive Testing (CAT). CAT, following the Item Response Theory (IRT) models, dynamically generates tests based on test-taker responses, driven by complex statistical algorithms. Even if CAT structures are complex, they are flexible and convenient, but concerns about test security should be addressed. Frequent item administration can lead to item exposure and cheating, necessitating preventive and diagnostic measures. In this thesis a method called "CHeater identification using Interim Person fit Statistic" (CHIPS) is developed, designed to identify and limit cheaters in real-time during test administration. CHIPS utilizes response times (RTs) to calculate an Interim Person fit Statistic (IPS), allowing for on-the-fly intervention using a more secret item bank. Also, a slight modification is proposed to overcome situations with constant speed, called Modified-CHIPS (M-CHIPS). A simulation study assesses CHIPS, highlighting its effectiveness in identifying and controlling cheaters. However, it reveals limitations when cheaters possess all correct answers. The M-CHIPS overcame this limitation. Furthermore, the method has shown not to be influenced by the cheaters’ ability distribution or the level of correlation between ability and speed of test-takers. Finally, the method has demonstrated flexibility for the choice of significance level and the transition from fixed-length tests to variable-length ones. The thesis discusses potential applications, including the suitability of the method for multiple-choice tests, assumptions about RT distribution and level of item pre-knowledge. Also limitations are discussed to explore future developments such as different RT distributions, unusual honest respondent behaviors, and field testing in real-world scenarios. In summary, CHIPS and M-CHIPS offer real-time cheating detection in CAT, enhancing test security and ability estimation while not penalizing test respondents.