28 resultados para Models and Performance Analysis


Relevância:

100.00% 100.00%

Publicador:

Resumo:

This work is focused on the study of saltwater intrusion in coastal aquifers, and in particular on the realization of conceptual schemes to evaluate the risk associated with it. Saltwater intrusion depends on different natural and anthropic factors, both presenting a strong aleatory behaviour, that should be considered for an optimal management of the territory and water resources. Given the uncertainty of problem parameters, the risk associated with salinization needs to be cast in a probabilistic framework. On the basis of a widely adopted sharp interface formulation, key hydrogeological problem parameters are modeled as random variables, and global sensitivity analysis is used to determine their influence on the position of saltwater interface. The analyses presented in this work rely on an efficient model reduction technique, based on Polynomial Chaos Expansion, able to combine the best description of the model without great computational burden. When the assumptions of classical analytical models are not respected, and this occurs several times in the applications to real cases of study, as in the area analyzed in the present work, one can adopt data-driven techniques, based on the analysis of the data characterizing the system under study. It follows that a model can be defined on the basis of connections between the system state variables, with only a limited number of assumptions about the "physical" behaviour of the system.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This thesis aims to present the ORC technology, its advantages and related problems. In particular, it provides an analysis of ORC waste heat recovery system in different and innovative scenarios, focusing on cases from the biggest to the lowest scale. Both industrial and residential ORC applications are considered. In both applications, the installation of a subcritical and recuperated ORC system is examined. Moreover, heat recovery is considered in absence of an intermediate heat transfer circuit. This solution allow to improve the recovery efficiency, but requiring safety precautions. Possible integrations of ORC systems with renewable sources are also presented and investigated to improve the non-programmable source exploitation. In particular, the offshore oil and gas sector has been selected as a promising industrial large-scale ORC application. From the design of ORC systems coupled with Gas Turbines (GTs) as topper systems, the dynamic behavior of the GT+ORC innovative combined cycles has been analyzed by developing a dynamic model of all the considered components. The dynamic behavior is caused by integration with a wind farm. The electric and thermal aspects have been examined to identify the advantages related to the waste heat recovery system installation. Moreover, an experimental test rig has been realized to test the performance of a micro-scale ORC prototype. The prototype recovers heat from a low temperature water stream, available for instance in industrial or residential waste heat. In the test bench, various sensors have been installed, an acquisitions system developed in Labview environment to completely analyze the ORC behavior. Data collected in real time and corresponding to the system dynamic behavior have been used to evaluate the system performance based on selected indexes. Moreover, various operational steady-state conditions are identified and operation maps are realized for a completely characterization of the system and to detect the optimal operating conditions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Due to increased interest in miniaturization, great attention has been given in the recent decade to the micro heat exchanging systems. Literature survey suggests that there is still a limited understanding of gas flows in micro heat exchanging systems. The aim of the current thesis is to further the understanding of fluid flow and heat transfer phenomenon inside such geometries when a compressible working fluid is utilized. A combined experimental and numerical approach has been utilized in order to overcome the lack of employable sensors for micro dimensional channels. After conducting a detailed comparison between various data reduction methodologies employed in the literature, the best suited methodology for gas microflow experimentalists is proposed. A transitional turbulence model is extensively validated against the experimental results of the microtubes and microchannels under adiabatic wall conditions. Heat transfer analysis of single microtubes showed that when the compressible working fluid is used, Nusselt number results are in partial disagreement with the conventional theory at highly turbulent flow regime for microtubes having a hydraulic diameter less than 250 microns. Experimental and numerical analysis on a prototype double layer microchannel heat exchanger showed that compressibility is detrimental to the thermal performance. It has been found that compressibility effects for micro heat exchangers are significant when the average Mach number at the outlet of the microchannel is greater than 0.1 compared to the adiabatic limit of 0.3. Lastly, to avoid a staggering amount of the computational power needed to simulate the micro heat exchanging systems with hundreds of microchannels, a reduced order model based on the porous medium has been developed that considers the compressibility of the gas inside microchannels. The validation of the proposed model against experimental results of average thermal effectiveness and the pressure loss showed an excellent match between the two.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Quantitative imaging in oncology aims at developing imaging biomarkers for diagnosis and prediction of cancer aggressiveness and therapy response before any morphological change become visible. This Thesis exploits Computed Tomography perfusion (CTp) and multiparametric Magnetic Resonance Imaging (mpMRI) for investigating diverse cancer features on different organs. I developed a voxel-based image analysis methodology in CTp and extended its use to mpMRI, for performing precise and accurate analyses at single-voxel level. This is expected to improve reproducibility of measurements and cancer mechanisms’ comprehension and clinical interpretability. CTp has not entered the clinical routine yet, although its usefulness in the monitoring of cancer angiogenesis, due to different perfusion computing methods yielding unreproducible results. Instead, machine learning applications in mpMRI, useful to detect imaging features representative of cancer heterogeneity, are mostly limited to clinical research, because of results’ variability and difficult interpretability, which make clinicians not confident in clinical applications. In hepatic CTp, I investigated whether, and under what conditions, two widely adopted perfusion methods, Maximum Slope (MS) and Deconvolution (DV), could yield reproducible parameters. To this end, I developed signal processing methods to model the first pass kinetics and remove any numerical cause hampering the reproducibility. In mpMRI, I proposed a new approach to extract local first-order features, aiming at preserving spatial reference and making their interpretation easier. In CTp, I found out the cause of MS and DV non-reproducibility: MS and DV represent two different states of the system. Transport delays invalidate MS assumptions and, by correcting MS formulation, I have obtained the voxel-based equivalence of the two methods. In mpMRI, the developed predictive models allowed (i) detecting rectal cancers responding to neoadjuvant chemoradiation showing, at pre-therapy, sparse coarse subregions with altered density, and (ii) predicting clinically significant prostate cancers stemming from the disproportion between high- and low- diffusivity gland components.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Silicon-based discrete high-power devices need to be designed with optimal performance up to several thousand volts and amperes to reach power ratings ranging from few kWs to beyond the 1 GW mark. To this purpose, a key element is the improvement of the junction termination (JT) since it allows to drastically reduce surface electric field peaks which may lead to an earlier device failure. This thesis will be mostly focused on the negative bevel termination which from several years constitutes a standard processing step in bipolar production lines. A simple methodology to realize its counterpart, a planar JT with variation of the lateral doping concentration (VLD) will be also described. On the JT a thin layer of a semi insulating material is usually deposited, which acts as passivation layer reducing the interface defects and contributing to increase the device reliability. A thorough understanding of how the passivation layer properties affect the breakdown voltage and the leakage current of a fast-recovery diode is fundamental to preserve the ideal termination effect and provide a stable blocking capability. More recently, amorphous carbon, also called diamond-like carbon (DLC), has been used as a robust surface passivation material. By using a commercial TCAD tool, a detailed physical explanation of DLC electrostatic and transport properties has been provided. The proposed approach is able to predict the breakdown voltage and the leakage current of a negative beveled power diode passivated with DLC as confirmed by the successfully validation against the available experiments. In addition, the VLD JT proposed to overcome the limitation of the negative bevel architecture has been simulated showing a breakdown voltage very close to the ideal one with a much smaller area consumption. Finally, the effect of a low junction depth on the formation of current filaments has been analyzed by performing reverse-recovery simulations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Hadrontherapy employs high-energy beams of charged particles (protons and heavier ions) to treat deep-seated tumours: these particles have a favourable depth-dose distribution in tissue characterized by a low dose in the entrance channel and a sharp maximum (Bragg peak) near the end of their path. In these treatments nuclear interactions have to be considered: beam particles can fragment in the human body releasing a non-zero dose beyond the Bragg peak while fragments of human body nuclei can modify the dose released in healthy tissues. These effects are still in question given the lack of interesting cross sections data. Also space radioprotection can profit by fragmentation cross section measurements: the interest in long-term manned space missions beyond Low Earth Orbit is growing in these years but it has to cope with major health risks due to space radiation. To this end, risk models are under study: however, huge gaps in fragmentation cross sections data are currently present preventing an accurate benchmark of deterministic and Monte Carlo codes. To fill these gaps in data, the FOOT (FragmentatiOn Of Target) experiment was proposed. It is composed by two independent and complementary setups, an Emulsion Cloud Chamber and an electronic setup composed by several subdetectors providing redundant measurements of kinematic properties of fragments produced in nuclear interactions between a beam and a target. FOOT aims to measure double differential cross sections both in angle and kinetic energy which is the most complete information to address existing questions. In this Ph.D. thesis, the development of the Trigger and Data Acquisition system for the FOOT electronic setup and a first analysis of 400 MeV/u 16O beam on Carbon target data acquired in July 2021 at GSI (Darmstadt, Germany) are presented. When possible, a comparison with other available measurements is also reported.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Understanding why market manipulation is conducted, under which conditions it is the most profitable and investigating the magnitude of these practices are crucial questions for financial regulators. Closing price manipulation induced by derivatives’ expiration is the primary subject of this thesis. The first chapter provides a mathematical framework in continuous time to study the incentive to manipulate a set of securities induced by a derivative position. An agent holding a European-type contingent claim, depending on the price of a basket of underlying securities, is considered. The agent can affect the price of the underlying securities by trading on each of them before expiration. The elements of novelty are at least twofold: (1) a multi-asset market is considered; (2) the problem is solved by means of both classic optimisation and stochastic control techniques. Both linear and option payoffs are considered. In the second chapter an empirical investigation is conducted on the existence of expiration day effects on the UK equity market. Intraday data on FTSE 350 stocks over a six-year period from 2015-2020 are used. The results show that the expiration of index derivatives is associated with a rise in both trading activity and volatility, together with significant price distortions. The expiration of single stock options appears to have little to no impact on the underlying securities. The last chapter examines the existence of patterns in line with closing price manipulation of UK stocks on option expiration days. The main contributions are threefold: (1) this is one of the few empirical studies on manipulation induced by the options market; (2) proprietary equity orderbook and transaction data sets are used to define manipulation proxies, providing a more detailed analysis; (3) the behaviour of proprietary trading firms is studied. Despite the industry concerns, no evidence is found of this type of manipulative behaviour.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This dissertation contributes to the scholarly debate on temporary teams by exploring team interactions and boundaries.The fundamental challenge in temporary teams originates from temporary participation in the teams. First, as participants join the team for a short period of time, there is not enough time to build trust, share understanding, and have effective interactions. Consequently, team outputs and practices built on team interactions become vulnerable. Secondly, as team participants move on and off the teams, teams’ boundaries become blurred over time. It leads to uncertainty among team participants and leaders about who is/is not identified as a team member causing collective disagreement within the team. Focusing on the above mentioned challenges, we conducted this research in healthcare organisations since the use of temporary teams in healthcare and hospital setting is prevalent. In particular, we focused on orthopaedic teams that provide personalised treatments for patients using 3D printing technology. Qualitative and quantitative data were collected using interviews, observations, questionnaires and archival data at Rizzoli Orthopaedic Institute, Bologna, Italy. This study provides the following research outputs. The first is a conceptual study that explores temporary teams’ literature using bibliometric analysis and systematic literature review to highlight research gaps. The second paper qualitatively studies temporary relationships within the teams by collecting data using group interviews and observations. The results highlighted the role of short-term dyadic relationships as a ground to share and transfer knowledge at the team level. Moreover, hierarchical structure of the teams facilitates knowledge sharing by supporting dyadic relationships within and beyond the team meetings. The third paper investigates impact of blurred boundaries on temporary teams’ performance. Using quantitative data collected through questionnaires and archival data, we concluded that boundary blurring in terms of fluidity, overlap and dispersion differently impacts team performance at high and low levels of task complexity.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Understanding the complex dynamics of beam-halo formation and evolution in circular particle accelerators is crucial for the design of current and future rings, particularly those utilizing superconducting magnets such as the CERN Large Hadron Collider (LHC), its luminosity upgrade HL-LHC, and the proposed Future Circular Hadron Collider (FCC-hh). A recent diffusive framework, which describes the evolution of the beam distribution by means of a Fokker-Planck equation, with diffusion coefficient derived from the Nekhoroshev theorem, has been proposed to describe the long-term behaviour of beam dynamics and particle losses. In this thesis, we discuss the theoretical foundations of this framework, and propose the implementation of an original measurement protocol based on collimator scans in view of measuring the Nekhoroshev-like diffusive coefficient by means of beam loss data. The available LHC collimator scan data, unfortunately collected without the proposed measurement protocol, have been successfully analysed using the proposed framework. This approach is also applied to datasets from detailed measurements of the impact on the beam losses of so-called long-range beam-beam compensators also at the LHC. Furthermore, dynamic indicators have been studied as a tool for exploring the phase-space properties of realistic accelerator lattices in single-particle tracking simulations. By first examining the classification performance of known and new indicators in detecting the chaotic character of initial conditions for a modulated Hénon map and then applying this knowledge to study the properties of realistic accelerator lattices, we tried to identify a connection between the presence of chaotic regions in the phase space and Nekhoroshev-like diffusive behaviour, providing new tools to the accelerator physics community.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Brain functioning relies on the interaction of several neural populations connected through complex connectivity networks, enabling the transmission and integration of information. Recent advances in neuroimaging techniques, such as electroencephalography (EEG), have deepened our understanding of the reciprocal roles played by brain regions during cognitive processes. The underlying idea of this PhD research is that EEG-related functional connectivity (FC) changes in the brain may incorporate important neuromarkers of behavior and cognition, as well as brain disorders, even at subclinical levels. However, a complete understanding of the reliability of the wide range of existing connectivity estimation techniques is still lacking. The first part of this work addresses this limitation by employing Neural Mass Models (NMMs), which simulate EEG activity and offer a unique tool to study interconnected networks of brain regions in controlled conditions. NMMs were employed to test FC estimators like Transfer Entropy and Granger Causality in linear and nonlinear conditions. Results revealed that connectivity estimates reflect information transmission between brain regions, a quantity that can be significantly different from the connectivity strength, and that Granger causality outperforms the other estimators. A second objective of this thesis was to assess brain connectivity and network changes on EEG data reconstructed at the cortical level. Functional brain connectivity has been estimated through Granger Causality, in both temporal and spectral domains, with the following goals: a) detect task-dependent functional connectivity network changes, focusing on internal-external attention competition and fear conditioning and reversal; b) identify resting-state network alterations in a subclinical population with high autistic traits. Connectivity-based neuromarkers, compared to the canonical EEG analysis, can provide deeper insights into brain mechanisms and may drive future diagnostic methods and therapeutic interventions. However, further methodological studies are required to fully understand the accuracy and information captured by FC estimates, especially concerning nonlinear phenomena.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Continuum parallel robots (CPRs) are manipulators employing multiple flexible beams arranged in parallel and connected to a rigid end-effector. CPRs promise higher payload and accuracy than serial CRs while keeping great flexibility. As the risk of injury during accidental contacts between a human and a CPR should be reduced, CPRs may be used in large-scale collaborative tasks or assisted robotic surgery. There exist various CPR designs, but the prototype conception is rarely based on performance considerations, and the CPRs realization in mainly based on intuitions or rigid-link parallel manipulators architectures. This thesis focuses on the performance analysis of CPRs, and the tools needed for such evaluation, such as workspace computation algorithms. In particular, workspace computation strategies for CPRs are essential for the performance assessment, since the CPRs workspace may be used as a performance index or it can serve for optimal-design tools. Two new workspace computation algorithms are proposed in this manuscript, the former focusing on the workspace volume computation and the certification of its numerical results, while the latter aims at computing the workspace boundary only. Due to the elastic nature of CPRs, a key performance indicator for these robots is the stability of their equilibrium configurations. This thesis proposes the experimental validation of the equilibrium stability assessment on a real prototype, demonstrating limitations of some commonly used assumptions. Additionally, a performance index measuring the distance to instability is originally proposed in this manuscript. Differently from the majority of the existing approaches, the clear advantage of the proposed index is a sound physical meaning; accordingly, the index can be used for a more straightforward performance quantification, and to derive robot specifications.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Natural events are a widely recognized hazard for industrial sites where relevant quantities of hazardous substances are handled, due to the possible generation of cascading events resulting in severe technological accidents (Natech scenarios). Natural events may damage storage and process equipment containing hazardous substances, that may be released leading to major accident scenarios called Natech events. The need to assess the risk associated with Natech scenarios is growing and methodologies were developed to allow the quantification of Natech risk, considering both point sources and linear sources as pipelines. A key element of these procedures is the use of vulnerability models providing an estimation of the damage probability of equipment or pipeline segment as a result of the impact of the natural event. Therefore, the first aim of the PhD project was to outline the state of the art of vulnerability models for equipment and pipelines subject to natural events such as floods, earthquakes, and wind. Moreover, the present PhD project also aimed at the development of new vulnerability models in order to fill some gaps in literature. In particular, a vulnerability model for vertical equipment subject to wind and to flood were developed. Finally, in order to improve the calculation of Natech risk for linear sources an original methodology was developed for Natech quantitative risk assessment methodology for pipelines subject to earthquakes. Overall, the results obtained are a step forward in the quantitative risk assessment of Natech accidents. The tools developed open the way to the inclusion of new equipment in the analysis of Natech events, and the methodology for the assessment of linear risk sources as pipelines provides an important tool for a more accurate and comprehensive assessment of Natech risk.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Embedded systems are increasingly integral to daily life, improving and facilitating the efficiency of modern Cyber-Physical Systems which provide access to sensor data, and actuators. As modern architectures become increasingly complex and heterogeneous, their optimization becomes a challenging task. Additionally, ensuring platform security is important to avoid harm to individuals and assets. This study primarily addresses challenges in contemporary Embedded Systems, focusing on platform optimization and security enforcement. The initial section of this study delves into the application of machine learning methods to efficiently determine the optimal number of cores for a parallel RISC-V cluster to minimize energy consumption using static source code analysis. Results demonstrate that automated platform configuration is not only viable but also that there is a moderate performance trade-off when relying solely on static features. The second part focuses on addressing the problem of heterogeneous device mapping, which involves assigning tasks to the most suitable computational device in a heterogeneous platform for optimal runtime. The contribution of this section lies in the introduction of novel pre-processing techniques, along with a training framework called Siamese Networks, that enhances the classification performance of DeepLLVM, an advanced approach for task mapping. Importantly, these proposed approaches are independent from the specific deep-learning model used. Finally, this research work focuses on addressing issues concerning the binary exploitation of software running in modern Embedded Systems. It proposes an architecture to implement Control-Flow Integrity in embedded platforms with a Root-of-Trust, aiming to enhance security guarantees with limited hardware modifications. The approach involves enhancing the architecture of a modern RISC-V platform for autonomous vehicles by implementing a side-channel communication mechanism that relays control-flow changes executed by the process running on the host core to the Root-of-Trust. This approach has limited impact on performance and it is effective in enhancing the security of embedded platforms.