30 resultados para Model-Based Design


Relevância:

90.00% 90.00%

Publicador:

Resumo:

Two of the main features of today complex software systems like pervasive computing systems and Internet-based applications are distribution and openness. Distribution revolves around three orthogonal dimensions: (i) distribution of control|systems are characterised by several independent computational entities and devices, each representing an autonomous and proactive locus of control; (ii) spatial distribution|entities and devices are physically distributed and connected in a global (such as the Internet) or local network; and (iii) temporal distribution|interacting system components come and go over time, and are not required to be available for interaction at the same time. Openness deals with the heterogeneity and dynamism of system components: complex computational systems are open to the integration of diverse components, heterogeneous in terms of architecture and technology, and are dynamic since they allow components to be updated, added, or removed while the system is running. The engineering of open and distributed computational systems mandates for the adoption of a software infrastructure whose underlying model and technology could provide the required level of uncoupling among system components. This is the main motivation behind current research trends in the area of coordination middleware to exploit tuple-based coordination models in the engineering of complex software systems, since they intrinsically provide coordinated components with communication uncoupling and further details in the references therein. An additional daunting challenge for tuple-based models comes from knowledge-intensive application scenarios, namely, scenarios where most of the activities are based on knowledge in some form|and where knowledge becomes the prominent means by which systems get coordinated. Handling knowledge in tuple-based systems induces problems in terms of syntax - e.g., two tuples containing the same data may not match due to differences in the tuple structure - and (mostly) of semantics|e.g., two tuples representing the same information may not match based on a dierent syntax adopted. Till now, the problem has been faced by exploiting tuple-based coordination within a middleware for knowledge intensive environments: e.g., experiments with tuple-based coordination within a Semantic Web middleware (surveys analogous approaches). However, they appear to be designed to tackle the design of coordination for specic application contexts like Semantic Web and Semantic Web Services, and they result in a rather involved extension of the tuple space model. The main goal of this thesis was to conceive a more general approach to semantic coordination. In particular, it was developed the model and technology of semantic tuple centres. It is adopted the tuple centre model as main coordination abstraction to manage system interactions. A tuple centre can be seen as a programmable tuple space, i.e. an extension of a Linda tuple space, where the behaviour of the tuple space can be programmed so as to react to interaction events. By encapsulating coordination laws within coordination media, tuple centres promote coordination uncoupling among coordinated components. Then, the tuple centre model was semantically enriched: a main design choice in this work was to try not to completely redesign the existing syntactic tuple space model, but rather provide a smooth extension that { although supporting semantic reasoning { keep the simplicity of tuple and tuple matching as easier as possible. By encapsulating the semantic representation of the domain of discourse within coordination media, semantic tuple centres promote semantic uncoupling among coordinated components. The main contributions of the thesis are: (i) the design of the semantic tuple centre model; (ii) the implementation and evaluation of the model based on an existent coordination infrastructure; (iii) a view of the application scenarios in which semantic tuple centres seem to be suitable as coordination media.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

A recent initiative of the European Space Agency (ESA) aims at the definition and adoption of a software reference architecture for use in on-board software of future space missions. Our PhD project placed in the context of that effort. At the outset of our work we gathered all the industrial needs relevant to ESA and all the main European space stakeholders and we were able to consolidate a set of technical high-level requirements for the fulfillment of them. The conclusion we reached from that phase confirmed that the adoption of a software reference architecture was indeed the best solution for the fulfillment of the high-level requirements. The software reference architecture we set on building rests on four constituents: (i) a component model, to design the software as a composition of individually verifiable and reusable software units; (ii) a computational model, to ensure that the architectural description of the software is statically analyzable; (iii) a programming model, to ensure that the implementation of the design entities conforms with the semantics, the assumptions and the constraints of the computational model; (iv) a conforming execution platform, to actively preserve at run time the properties asserted by static analysis. The nature, feasibility and fitness of constituents (ii), (iii) and (iv), were already proved by the author in an international project that preceded the commencement of the PhD work. The core of the PhD project was therefore centered on the design and prototype implementation of constituent (i), a component model. Our proposed component model is centered on: (i) rigorous separation of concerns, achieved with the support for design views and by careful allocation of concerns to the dedicated software entities; (ii) the support for specification and model-based analysis of extra-functional properties; (iii) the inclusion space-specific concerns.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The aim of this thesis is to apply multilevel regression model in context of household surveys. Hierarchical structure in this type of data is characterized by many small groups. In last years comparative and multilevel analysis in the field of perceived health have grown in size. The purpose of this thesis is to develop a multilevel analysis with three level of hierarchy for Physical Component Summary outcome to: evaluate magnitude of within and between variance at each level (individual, household and municipality); explore which covariates affect on perceived physical health at each level; compare model-based and design-based approach in order to establish informativeness of sampling design; estimate a quantile regression for hierarchical data. The target population are the Italian residents aged 18 years and older. Our study shows a high degree of homogeneity within level 1 units belonging from the same group, with an intraclass correlation of 27% in a level-2 null model. Almost all variance is explained by level 1 covariates. In fact, in our model the explanatory variables having more impact on the outcome are disability, unable to work, age and chronic diseases (18 pathologies). An additional analysis are performed by using novel procedure of analysis :"Linear Quantile Mixed Model", named "Multilevel Linear Quantile Regression", estimate. This give us the possibility to describe more generally the conditional distribution of the response through the estimation of its quantiles, while accounting for the dependence among the observations. This has represented a great advantage of our models with respect to classic multilevel regression. The median regression with random effects reveals to be more efficient than the mean regression in representation of the outcome central tendency. A more detailed analysis of the conditional distribution of the response on other quantiles highlighted a differential effect of some covariate along the distribution.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The diagnosis, grading and classification of tumours has benefited considerably from the development of DCE-MRI which is now essential to the adequate clinical management of many tumour types due to its capability in detecting active angiogenesis. Several strategies have been proposed for DCE-MRI evaluation. Visual inspection of contrast agent concentration curves vs time is a very simple yet operator dependent procedure, therefore more objective approaches have been developed in order to facilitate comparison between studies. In so called model free approaches, descriptive or heuristic information extracted from time series raw data have been used for tissue classification. The main issue concerning these schemes is that they have not a direct interpretation in terms of physiological properties of the tissues. On the other hand, model based investigations typically involve compartmental tracer kinetic modelling and pixel-by-pixel estimation of kinetic parameters via non-linear regression applied on region of interests opportunely selected by the physician. This approach has the advantage to provide parameters directly related to the pathophysiological properties of the tissue such as vessel permeability, local regional blood flow, extraction fraction, concentration gradient between plasma and extravascular-extracellular space. Anyway, nonlinear modelling is computational demanding and the accuracy of the estimates can be affected by the signal-to-noise ratio and by the initial solutions. The principal aim of this thesis is investigate the use of semi-quantitative and quantitative parameters for segmentation and classification of breast lesion. The objectives can be subdivided as follow: describe the principal techniques to evaluate time intensity curve in DCE-MRI with focus on kinetic model proposed in literature; to evaluate the influence in parametrization choice for a classic bi-compartmental kinetic models; to evaluate the performance of a method for simultaneous tracer kinetic modelling and pixel classification; to evaluate performance of machine learning techniques training for segmentation and classification of breast lesion.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

In this thesis, the industrial application of control a Permanent Magnet Synchronous Motor in a sensorless configuration has been faced, and in particular the task of estimating the unknown “parameters” necessary for the application of standard motor control algorithms. In literature several techniques have been proposed to cope with this task, among them the technique based on model-based nonlinear observer has been followed. The hypothesis of neglecting the mechanical dynamics from the motor model has been applied due to practical and physical considerations, therefore only the electromagnetic dynamics has been used for the observers design. First observer proposed is based on stator currents and Stator Flux dynamics described in a generic rotating reference frame. Stator flux dynamics are known apart their initial conditions which are estimated, with speed that is also unknown, through the use of the Adaptive Theory. The second observer proposed is based on stator currents and Rotor Flux dynamics described in a self-aligning reference frame. Rotor flux dynamics are described in the stationary reference frame exploiting polar coordinates instead of classical Cartesian coordinates, by means the estimation of amplitude and speed of the rotor flux. The stability proof is derived in a Singular Perturbation Framework, which allows for the use the current estimation errors as a measure of rotor flux estimation errors. The stability properties has been derived using a specific theory for systems with time scale separation, which guarantees a semi-global practical stability. For the two observer ideal simulations and real simulations have been performed to prove the effectiveness of the observers proposed, real simulations on which the effects of the Inverter nonlinearities have been introduced, showing the already known problems of the model-based observers for low speed applications.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Nella presente tesi è proposta una metodologia per lo studio e la valutazione del comportamento sismico di edifici a telaio. Il metodo prevede la realizzazione di analisi non-lineari su modelli equivalenti MDOF tipo stick, in accordo alla classificazione data nel report FEMA 440. Gli step per l’applicazione del metodo sono descritti nella tesi. Per la validazione della metodologia si sono utilizzati confronti con analisi time-history condotte su modelli tridimensionali dettagliati delle strutture studiate (detailed model). I parametri ingegneristici considerati nel confronto, nell’ottica di utilizzare il metodo proposto in un approccio del tipo Displacement-Based Design sono lo spostamento globale in sommità, gli spostamenti di interpiano, le forze di piano e la forza totale alla base. I risultati delle analisi condotte sui modelli stick equivalenti, mostrano una buona corrispondenza, ottima in certi casi, con quelli delle analisi condotte sui modelli tridimensionali dettagliati. Le time-history realizzate sugli stick model permettono però, un consistente risparmio in termini di onere computazionale e di tempo per il post-processing dei risultati ottenuti.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The quench characteristics of second generation (2 G) YBCO Coated Conductor (CC) tapes are of fundamental importance for the design and safe operation of superconducting cables and magnets based on this material. Their ability to transport high current densities at high temperature, up to 77 K, and at very high fields, over 20 T, together with the increasing knowledge in their manufacturing, which is reducing their cost, are pushing the use of this innovative material in numerous system applications, from high field magnets for research to motors and generators as well as for cables. The aim of this Ph. D. thesis is the experimental analysis and numerical simulations of quench in superconducting HTS tapes and coils. A measurements facility for the characterization of superconducting tapes and coils was designed, assembled and tested. The facility consist of a cryostat, a cryocooler, a vacuum system, resistive and superconducting current leads and signal feedthrough. Moreover, the data acquisition system and the software for critical current and quench measurements were developed. A 2D model was developed using the finite element code COMSOL Multiphysics R . The problem of modeling the high aspect ratio of the tape is tackled by multiplying the tape thickness by a constant factor, compensating the heat and electrical balance equations by introducing a material anisotropy. The model was then validated both with the results of a 1D quench model based on a non-linear electric circuit coupled to a thermal model of the tape, to literature measurements and to critical current and quench measurements made in the cryogenic facility. Finally the model was extended to the study of coils and windings with the definition of the tape and stack homogenized properties. The procedure allows the definition of a multi-scale hierarchical model, able to simulate the windings with different degrees of detail.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Modern control systems are becoming more and more complex and control algorithms more and more sophisticated. Consequently, Fault Detection and Diagnosis (FDD) and Fault Tolerant Control (FTC) have gained central importance over the past decades, due to the increasing requirements of availability, cost efficiency, reliability and operating safety. This thesis deals with the FDD and FTC problems in a spacecraft Attitude Determination and Control System (ADCS). Firstly, the detailed nonlinear models of the spacecraft attitude dynamics and kinematics are described, along with the dynamic models of the actuators and main external disturbance sources. The considered ADCS is composed of an array of four redundant reaction wheels. A set of sensors provides satellite angular velocity, attitude and flywheel spin rate information. Then, general overviews of the Fault Detection and Isolation (FDI), Fault Estimation (FE) and Fault Tolerant Control (FTC) problems are presented, and the design and implementation of a novel diagnosis system is described. The system consists of a FDI module composed of properly organized model-based residual filters, exploiting the available input and output information for the detection and localization of an occurred fault. A proper fault mapping procedure and the nonlinear geometric approach are exploited to design residual filters explicitly decoupled from the external aerodynamic disturbance and sensitive to specific sets of faults. The subsequent use of suitable adaptive FE algorithms, based on the exploitation of radial basis function neural networks, allows to obtain accurate fault estimations. Finally, this estimation is actively exploited in a FTC scheme to achieve a suitable fault accommodation and guarantee the desired control performances. A standard sliding mode controller is implemented for attitude stabilization and control. Several simulation results are given to highlight the performances of the overall designed system in case of different types of faults affecting the ADCS actuators and sensors.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Il progetto di ricerca è finalizzato allo sviluppo di una metodologia innovativa di supporto decisionale nel processo di selezione tra alternative progettuali, basata su indicatori di prestazione. In particolare il lavoro si è focalizzato sulla definizione d’indicatori atti a supportare la decisione negli interventi di sbottigliamento di un impianto di processo. Sono stati sviluppati due indicatori, “bottleneck indicators”, che permettono di valutare la reale necessità dello sbottigliamento, individuando le cause che impediscono la produzione e lo sfruttamento delle apparecchiature. Questi sono stati validati attraverso l’applicazione all’analisi di un intervento su un impianto esistente e verificando che lo sfruttamento delle apparecchiature fosse correttamente individuato. Definita la necessità dell’intervento di sbottigliamento, è stato affrontato il problema della selezione tra alternative di processo possibili per realizzarlo. È stato applicato alla scelta un metodo basato su indicatori di sostenibilità che consente di confrontare le alternative considerando non solo il ritorno economico degli investimenti ma anche gli impatti su ambiente e sicurezza, e che è stato ulteriormente sviluppato in questa tesi. Sono stati definiti due indicatori, “area hazard indicators”, relativi alle emissioni fuggitive, per integrare questi aspetti nell’analisi della sostenibilità delle alternative. Per migliorare l’accuratezza nella quantificazione degli impatti è stato sviluppato un nuovo modello previsionale atto alla stima delle emissioni fuggitive di un impianto, basato unicamente sui dati disponibili in fase progettuale, che tiene conto delle tipologie di sorgenti emettitrici, dei loro meccanismi di perdita e della manutenzione. Validato mediante il confronto con dati sperimentali di un impianto produttivo, si è dimostrato che tale metodo è indispensabile per un corretto confronto delle alternative poiché i modelli esistenti sovrastimano eccessivamente le emissioni reali. Infine applicando gli indicatori ad un impianto esistente si è dimostrato che sono fondamentali per semplificare il processo decisionale, fornendo chiare e precise indicazioni impiegando un numero limitato di informazioni per ricavarle.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Nowadays robotic applications are widespread and most of the manipulation tasks are efficiently solved. However, Deformable-Objects (DOs) still represent a huge limitation for robots. The main difficulty in DOs manipulation is dealing with the shape and dynamics uncertainties, which prevents the use of model-based approaches (since they are excessively computationally complex) and makes sensory data difficult to interpret. This thesis reports the research activities aimed to address some applications in robotic manipulation and sensing of Deformable-Linear-Objects (DLOs), with particular focus to electric wires. In all the works, a significant effort was made in the study of an effective strategy for analyzing sensory signals with various machine learning algorithms. In the former part of the document, the main focus concerns the wire terminals, i.e. detection, grasping, and insertion. First, a pipeline that integrates vision and tactile sensing is developed, then further improvements are proposed for each module. A novel procedure is proposed to gather and label massive amounts of training images for object detection with minimal human intervention. Together with this strategy, we extend a generic object detector based on Convolutional-Neural-Networks for orientation prediction. The insertion task is also extended by developing a closed-loop control capable to guide the insertion of a longer and curved segment of wire through a hole, where the contact forces are estimated by means of a Recurrent-Neural-Network. In the latter part of the thesis, the interest shifts to the DLO shape. Robotic reshaping of a DLO is addressed by means of a sequence of pick-and-place primitives, while a decision making process driven by visual data learns the optimal grasping locations exploiting Deep Q-learning and finds the best releasing point. The success of the solution leverages on a reliable interpretation of the DLO shape. For this reason, further developments are made on the visual segmentation.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

In Cystic Fibrosis (CF) the deletion of phenylalanine 508 (F508del) in the CFTR anion channel is associated to misfolding and defective gating of the mutant protein. Among the known proteins involved in CFTR processing, one of the most promising drug target is the ubiquitin ligase RNF5, which normally promotes F508del-CFTR degradation. In this context, a small molecule RNF5 inhibitor is expected to chemically mimic a condition of RNF5 silencing, thus preventing mutant CFTR degradation and causing its stabilization and plasma membrane trafficking. Hence, by exploiting a virtual screening (VS) campaign, the hit compound inh-2 was discovered as the first-in-class inhibitor of RNF5. Evaluation of inh-2 efficacy on CFTR rescue showed that it efficiently decreases ubiquitination of mutant CFTR and increases chloride current in human primary bronchial epithelia. Based on the promising biological results obtained with inh-2, this thesis reports the structure-based design of potential RNF5 inhibitors having improved potency and efficacy. The optimization of general synthetic strategies gave access to a library of analogues of the 1,2,4-thiadiazol-5-ylidene inh-2 for SAR investigation. The new analogues were tested for their corrector activity in CFBE41o- cells by using the microfluorimetric HS-YFP assay as a primary screen. Then, the effect of putative RNF5 inhibitors on proliferation, apoptosis and the formation of autophagic vacuoles was evaluated. Some of the new analogs significantly increased the basal level of autophagy, reproducing RNF5 silencing effect in cell. Among them, one compound also displayed a greater rescue of the F508del-CFTR trafficking defect than inh-2. Our preliminary results suggest that the 1,2,4-thiadiazolylidene could be a suitable scaffold for the discovery of potential RNF5 inhibitors able to rescue mutant CFTRs. Biological tests are still ongoing to acquire in-depth knowledge about the mechanism of action and therapeutic relevance of this unprecedented pharmacological strategy.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Nonostante le importanti ricadute che gli impianti protesici di caviglia hanno nella qualità della vita dei pazienti che si sottopongono ad intervento di sostituzione articolare, le reali proprietà biomeccaniche e cinematiche in-vivo e sotto carico degli impianti protesici sono state scarsamente studiate e descritte in letteratura. Lo scopo di questa trattazione è quella di valutare la cinematica protesica complessiva, in vivo, attraverso l’utilizzo dell’Analisi Radiostereometrica model-based (MB-RSA) e di ulteriori metodiche clinico-strumentali. La valutazione cinematica è stata permessa dall’analisi della posizione degli impianti attraverso la MB-RSA. Tra gli obiettivi secondari, i pazienti sono stati valutati clinicamente mediante AOFAS Ankle-Hindfoot score e SF-36, mediante full-body gait analysis con sensori inerziali e valutazione posturale-stabilometrica mediante Y Balance Test e workstation dedicata Delos DPPS. I pazienti sottoposti ad iter completo con valutazione clinica e strumentale a fine follow-up sono risultati 18 (2 drop-out). Il ROM complessivo a catena cinetica chiusa ha evidenziato una dorsi-plantarflessione complessiva media di 19.84°. Gli score clinici hanno mostrato tutti un netto miglioramento nel post-operatorio. La gait analysis ha evidenziato uno schema del passo composto dai tre principali spike e compatibile con schemi fisiologici. Dal punto di vista cinematico, i risultati angolari MB-RSA ricavati durante questo lavoro di tesi evidenziano tutti e 6 i gradi di libertà, dato coerente con la mobilità di una caviglia nativa. Valori di articolarità differenti sono stati registrati mediante sensori inerziali. Infine, in una valutazione cinematica complessiva, le possibili implicazioni sul bilanciamento posturale e propriocettivo presente nelle caviglie artrosiche e successivamente sottoposte a sostituzione protesica totale sono ampiamente descritte e discusse. I dati raccolti in questo lavoro di tesi rappresentano il risultato di una valutazione cinematica complessiva, e potranno aiutare a definire una tipologia di soggetto artrosico in cui i risultati siano verosimilmente migliori ed eventualmente a migliorare design e strumentari futuri.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Uropathogenic Escherichia coli (UPEC) accounts for approximately 85% of all urinary tract infections (UTIs), causing a global economic burden. E. coli is one of the pathogens mentioned in the ESKAPEE list drafted by OMS, meaning that the increasing antibiotic resistance acquired by UPEC is and will be a serious health problem in the future. Amongst the immunogenic antigens exposed on the surface of UPEC, FimH represent a potential target for vaccine development, since it is involved in the early stages of infection. As already demonstrated, immunizations with FimH elicit functional antibodies that prevent UPEC infections even though the number of doses required to elicit a strong immune response is not optimal. In this work, we aimed to stabilize FimH as a soluble recombinant antigen exploiting the donor strand complementation mechanism by generating different chimeric constructs constituted by FimH and FimG donor strand. To explore the potential of self-assembling nanoparticles to display FimH through genetic fusion, different constructs have been computationally designed and produced. In this work a structure-based design, using available crystal structures of FimH and three different NPs was performed to generate different constructs with optimized properties. Despite the different conditions tested, all the constructs designed (single antigen or chimeric NPs), resulted to be un-soluble proteins in E. coli. To overcome this issue a mammalian expression system has been tested. Soluble antigen expression was achieved for all constructs tested in the culture supernatants. Three novel chimeric NPs have been characterized by transmission electron microscopy (TEM) confirming the presence of correctly assembled NPs displaying UPEC antigen. In vivo study has shown a higher immunogenicity of the E. coli antigen when displayed on NPs surface compared to the single recombinant antigen. The antibodies elicited by chimeric NPs showed a higher functionality in the inhibition of bacterial adhesion.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Il patrimonio residenziale italiano ammonta a 12,2 milioni di edifici, di cui il 57,5% ha più di 50 anni ed è stato costruito in assenza di normative specifiche, in termini di sicurezza sismica, resistenza al fuoco, efficienza energetica e accessibilità, e manifesta un’avanzata obsolescenza. Agire su questo patrimonio significa operare tramite le due macro categorie di intervento: demolizione/ricostruzione o riqualificazione energetica. Questa ricerca dottorale vuole indagare la demolizione/ricostruzione di comparti urbani periferici, costruiti tra 1945-1965, quale strategia di rigenerazione urbana, integrandola in un modello edilizio basato sui criteri dell’economia circolare. Vengono definite le caratteristiche costruttive e i principi di questo modello di progettazione ecosistemica, denominato Integrho, che coniuga i criteri di ecodesign nel ciclo di vita (Building in Layers, Design for Disassembly e il Design out Waste) con quelli di bioclimaticità e di adattabilità funzionale. Il lavoro è stato improntato secondo due livelli gerarchici, scala urbana e scala edilizia, tra loro correlate mediante quella intermedia dell’isolato, al fine di ottenere un obiettivo di natura metodologica: definire uno strumento di supporto decisionale, capace di indirizzare tra le categorie di intervento attraverso parametri oggettivi, valutati con analisi comparative speditive. Tale metodologia viene applicata al contesto di Bologna, e si fonda sulla creazione di un’approfondita base conoscitiva attraverso la catalogazione delle 8.209 pratiche edilizie di nuova costruzione presentate tra 1945 e il 1965. Tale strumento georeferenziato, contenente informazioni tipologiche, costruttive ecc., è impiegato per valutare in modo quantitativo e speditivo i consumi energetici, i materiali incorporati, gli impatti ambientali e i costi economici dei differenti scenari di intervento nel ciclo di vita. Infine, l’applicazione del modello edilizio Integrho e del paradigma Ri-Costruire per Ri-Generare ad uno degli isolati periferici selezionati, è impiegata come esemplificazione dell’intero processo, dalla fase conoscitiva a quella strumentale, al fine di verificarne l’attendibilità e l’applicabilità su larga scala.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Recent technological advancements have played a key role in seamlessly integrating cloud, edge, and Internet of Things (IoT) technologies, giving rise to the Cloud-to-Thing Continuum paradigm. This cloud model connects many heterogeneous resources that generate a large amount of data and collaborate to deliver next-generation services. While it has the potential to reshape several application domains, the number of connected entities remarkably broadens the security attack surface. One of the main problems is the lack of security measures to adapt to the dynamic and evolving conditions of the Cloud-To-Thing Continuum. To address this challenge, this dissertation proposes novel adaptable security mechanisms. Adaptable security is the capability of security controls, systems, and protocols to dynamically adjust to changing conditions and scenarios. However, since the design and development of novel security mechanisms can be explored from different perspectives and levels, we place our attention on threat modeling and access control. The contributions of the thesis can be summarized as follows. First, we introduce a model-based methodology that secures the design of edge and cyber-physical systems. This solution identifies threats, security controls, and moving target defense techniques based on system features. Then, we focus on access control management. Since access control policies are subject to modifications, we evaluate how they can be efficiently shared among distributed areas, highlighting the effectiveness of distributed ledger technologies. Furthermore, we propose a risk-based authorization middleware, adjusting permissions based on real-time data, and a federated learning framework that enhances trustworthiness by weighting each client's contributions according to the quality of their partial models. Finally, since authorization revocation is another critical concern, we present an efficient revocation scheme for verifiable credentials in IoT networks, featuring decentralization, demanding minimum storage and computing capabilities. All the mechanisms have been evaluated in different conditions, proving their adaptability to the Cloud-to-Thing Continuum landscape.