31 resultados para Machine Learning,Natural Language Processing,Descriptive Text Mining,POIROT,Transformer
Resumo:
The advent of omic data production has opened many new perspectives in the quest for modelling complexity in biophysical systems. With the capability of characterizing a complex organism through the patterns of its molecular states, observed at different levels through various omics, a new paradigm of investigation is arising. In this thesis, we investigate the links between perturbations of the human organism, described as the ensemble of crosstalk of its molecular states, and health. Machine learning plays a key role within this picture, both in omic data analysis and model building. We propose and discuss different frameworks developed by the author using machine learning for data reduction, integration, projection on latent features, pattern analysis, classification and clustering of omic data, with a focus on 1H NMR metabolomic spectral data. The aim is to link different levels of omic observations of molecular states, from nanoscale to macroscale, to study perturbations such as diseases and diet interpreted as changes in molecular patterns. The first part of this work focuses on the fingerprinting of diseases, linking cellular and systemic metabolomics with genomic to asses and predict the downstream of perturbations all the way down to the enzymatic network. The second part is a set of frameworks and models, developed with 1H NMR metabolomic at its core, to study the exposure of the human organism to diet and food intake in its full complexity, from epidemiological data analysis to molecular characterization of food structure.
Resumo:
Whole Exome Sequencing (WES) is rapidly becoming the first-tier test in clinics, both thanks to its declining costs and the development of new platforms that help clinicians in the analysis and interpretation of SNV and InDels. However, we still know very little on how CNV detection could increase WES diagnostic yield. A plethora of exome CNV callers have been published over the years, all showing good performances towards specific CNV classes and sizes, suggesting that the combination of multiple tools is needed to obtain an overall good detection performance. Here we present TrainX, a ML-based method for calling heterozygous CNVs in WES data using EXCAVATOR2 Normalized Read Counts. We select males and females’ non pseudo-autosomal chromosome X alignments to construct our dataset and train our model, make predictions on autosomes target regions and use HMM to call CNVs. We compared TrainX against a set of CNV tools differing for the detection method (GATK4 gCNV, ExomeDepth, DECoN, CNVkit and EXCAVATOR2) and found that our algorithm outperformed them in terms of stability, as we identified both deletions and duplications with good scores (0.87 and 0.82 F1-scores respectively) and for sizes reaching the minimum resolution of 2 target regions. We also evaluated the method robustness using a set of WES and SNP array data (n=251), part of the Italian cohort of Epi25 collaborative, and were able to retrieve all clinical CNVs previously identified by the SNP array. TrainX showed good accuracy in detecting heterozygous CNVs of different sizes, making it a promising tool to use in a diagnostic setting.
Resumo:
The Three-Dimensional Single-Bin-Size Bin Packing Problem is one of the most studied problem in the Cutting & Packing category. From a strictly mathematical point of view, it consists of packing a finite set of strongly heterogeneous “small” boxes, called items, into a finite set of identical “large” rectangles, called bins, minimizing the unused volume and requiring that the items are packed without overlapping. The great interest is mainly due to the number of real-world applications in which it arises, such as pallet and container loading, cutting objects out of a piece of material and packaging design. Depending on these real-world applications, more objective functions and more practical constraints could be needed. After a brief discussion about the real-world applications of the problem and a exhaustive literature review, the design of a two-stage algorithm to solve the aforementioned problem is presented. The algorithm must be able to provide the spatial coordinates of the placed boxes vertices and also the optimal boxes input sequence, while guaranteeing geometric, stability, fragility constraints and a reduced computational time. Due to NP-hard complexity of this type of combinatorial problems, a fusion of metaheuristic and machine learning techniques is adopted. In particular, a hybrid genetic algorithm coupled with a feedforward neural network is used. In the first stage, a rich dataset is created starting from a set of real input instances provided by an industrial company and the feedforward neural network is trained on it. After its training, given a new input instance, the hybrid genetic algorithm is able to run using the neural network output as input parameter vector, providing as output the optimal solution. The effectiveness of the proposed works is confirmed via several experimental tests.
Resumo:
Machine (and deep) learning technologies are more and more present in several fields. It is undeniable that many aspects of our society are empowered by such technologies: web searches, content filtering on social networks, recommendations on e-commerce websites, mobile applications, etc., in addition to academic research. Moreover, mobile devices and internet sites, e.g., social networks, support the collection and sharing of information in real time. The pervasive deployment of the aforementioned technological instruments, both hardware and software, has led to the production of huge amounts of data. Such data has become more and more unmanageable, posing challenges to conventional computing platforms, and paving the way to the development and widespread use of the machine and deep learning. Nevertheless, machine learning is not only a technology. Given a task, machine learning is a way of proceeding (a way of thinking), and as such can be approached from different perspectives (points of view). This, in particular, will be the focus of this research. The entire work concentrates on machine learning, starting from different sources of data, e.g., signals and images, applied to different domains, e.g., Sport Science and Social History, and analyzed from different perspectives: from a non-data scientist point of view through tools and platforms; setting a problem stage from scratch; implementing an effective application for classification tasks; improving user interface experience through Data Visualization and eXtended Reality. In essence, not only in a quantitative task, not only in a scientific environment, and not only from a data-scientist perspective, machine (and deep) learning can do the difference.
Resumo:
The study of ancient, undeciphered scripts presents unique challenges, that depend both on the nature of the problem and on the peculiarities of each writing system. In this thesis, I present two computational approaches that are tailored to two different tasks and writing systems. The first of these methods is aimed at the decipherment of the Linear A afraction signs, in order to discover their numerical values. This is achieved with a combination of constraint programming, ad-hoc metrics and paleographic considerations. The second main contribution of this thesis regards the creation of an unsupervised deep learning model which uses drawings of signs from ancient writing system to learn to distinguish different graphemes in the vector space. This system, which is based on techniques used in the field of computer vision, is adapted to the study of ancient writing systems by incorporating information about sequences in the model, mirroring what is often done in natural language processing. In order to develop this model, the Cypriot Greek Syllabary is used as a target, since this is a deciphered writing system. Finally, this unsupervised model is adapted to the undeciphered Cypro-Minoan and it is used to answer open questions about this script. In particular, by reconstructing multiple allographs that are not agreed upon by paleographers, it supports the idea that Cypro-Minoan is a single script and not a collection of three script like it was proposed in the literature. These results on two different tasks shows that computational methods can be applied to undeciphered scripts, despite the relatively low amount of available data, paving the way for further advancement in paleography using these methods.
Resumo:
In medicine, innovation depends on a better knowledge of the human body mechanism, which represents a complex system of multi-scale constituents. Unraveling the complexity underneath diseases proves to be challenging. A deep understanding of the inner workings comes with dealing with many heterogeneous information. Exploring the molecular status and the organization of genes, proteins, metabolites provides insights on what is driving a disease, from aggressiveness to curability. Molecular constituents, however, are only the building blocks of the human body and cannot currently tell the whole story of diseases. This is why nowadays attention is growing towards the contemporary exploitation of multi-scale information. Holistic methods are then drawing interest to address the problem of integrating heterogeneous data. The heterogeneity may derive from the diversity across data types and from the diversity within diseases. Here, four studies conducted data integration using customly designed workflows that implement novel methods and views to tackle the heterogeneous characterization of diseases. The first study devoted to determine shared gene regulatory signatures for onco-hematology and it showed partial co-regulation across blood-related diseases. The second study focused on Acute Myeloid Leukemia and refined the unsupervised integration of genomic alterations, which turned out to better resemble clinical practice. In the third study, network integration for artherosclerosis demonstrated, as a proof of concept, the impact of network intelligibility when it comes to model heterogeneous data, which showed to accelerate the identification of new potential pharmaceutical targets. Lastly, the fourth study introduced a new method to integrate multiple data types in a unique latent heterogeneous-representation that facilitated the selection of important data types to predict the tumour stage of invasive ductal carcinoma. The results of these four studies laid the groundwork to ease the detection of new biomarkers ultimately beneficial to medical practice and to the ever-growing field of Personalized Medicine.
Resumo:
In recent decades, two prominent trends have influenced the data modeling field, namely network analysis and machine learning. This thesis explores the practical applications of these techniques within the domain of drug research, unveiling their multifaceted potential for advancing our comprehension of complex biological systems. The research undertaken during this PhD program is situated at the intersection of network theory, computational methods, and drug research. Across six projects presented herein, there is a gradual increase in model complexity. These projects traverse a diverse range of topics, with a specific emphasis on drug repurposing and safety in the context of neurological diseases. The aim of these projects is to leverage existing biomedical knowledge to develop innovative approaches that bolster drug research. The investigations have produced practical solutions, not only providing insights into the intricacies of biological systems, but also allowing the creation of valuable tools for their analysis. In short, the achievements are: • A novel computational algorithm to identify adverse events specific to fixed-dose drug combinations. • A web application that tracks the clinical drug research response to SARS-CoV-2. • A Python package for differential gene expression analysis and the identification of key regulatory "switch genes". • The identification of pivotal events causing drug-induced impulse control disorders linked to specific medications. • An automated pipeline for discovering potential drug repurposing opportunities. • The creation of a comprehensive knowledge graph and development of a graph machine learning model for predictions. Collectively, these projects illustrate diverse applications of data science and network-based methodologies, highlighting the profound impact they can have in supporting drug research activities.
Resumo:
Background There is a wide variation of recurrence risk of Non-small-cell lung cancer (NSCLC) within the same Tumor Node Metastasis (TNM) stage, suggesting that other parameters are involved in determining this probability. Radiomics allows extraction of quantitative information from images that can be used for clinical purposes. The primary objective of this study is to develop a radiomic prognostic model that predicts a 3 year disease free-survival (DFS) of resected Early Stage (ES) NSCLC patients. Material and Methods 56 pre-surgery non contrast Computed Tomography (CT) scans were retrieved from the PACS of our institution and anonymized. Then they were automatically segmented with an open access deep learning pipeline and reviewed by an experienced radiologist to obtain 3D masks of the NSCLC. Images and masks underwent to resampling normalization and discretization. From the masks hundreds Radiomic Features (RF) were extracted using Py-Radiomics. Hence, RF were reduced to select the most representative features. The remaining RF were used in combination with Clinical parameters to build a DFS prediction model using Leave-one-out cross-validation (LOOCV) with Random Forest. Results and Conclusion A poor agreement between the radiologist and the automatic segmentation algorithm (DICE score of 0.37) was found. Therefore, another experienced radiologist manually segmented the lesions and only stable and reproducible RF were kept. 50 RF demonstrated a high correlation with the DFS but only one was confirmed when clinicopathological covariates were added: Busyness a Neighbouring Gray Tone Difference Matrix (HR 9.610). 16 clinical variables (which comprised TNM) were used to build the LOOCV model demonstrating a higher Area Under the Curve (AUC) when RF were included in the analysis (0.67 vs 0.60) but the difference was not statistically significant (p=0,5147).
Resumo:
Using Big Data and Natural Language Processing (NLP) tools, this dissertation investigates the narrative strategies that atypical actors can leverage to deal with the adverse reactions they often elicit. Extensive research shows that atypical actors, those who fail to abide by established contextual standards and norms, are subject to skepticism and face a higher risk of rejection. Indeed, atypical actors combine features and behaviors in unconventional ways, thereby generating confusion in the audience and instilling doubts about their propositions' legitimacy. However, the same atypicality is often cited as the precursor to socio-cultural innovation and a strategic act to expand the capacity for delivering valued goods and services. Contextualizing the conditions under which atypicality is celebrated or punished has been a significant theoretical challenge for scholars interested in reconciling this tension. Nevertheless, prior work has focused on audience side factors or on actor-side characteristics that are only scantily under an actor's control (e.g., status and reputation). This dissertation demonstrates that atypical actors can use strategically crafted narratives to mitigate against the audience’s negative response. In particular, when atypical actors evoke conventional features in their story, they are more likely to overcome the illegitimacy discount usually applied to them. Moreover, narratives become successful navigational devices for atypicality when atypical actors use a more abstract language. This simplifies classification and provides the audience with more flexibility to interpret and understand them.
Resumo:
Although the debate of what data science is has a long history and has not reached a complete consensus yet, Data Science can be summarized as the process of learning from data. Guided by the above vision, this thesis presents two independent data science projects developed in the scope of multidisciplinary applied research. The first part analyzes fluorescence microscopy images typically produced in life science experiments, where the objective is to count how many marked neuronal cells are present in each image. Aiming to automate the task for supporting research in the area, we propose a neural network architecture tuned specifically for this use case, cell ResUnet (c-ResUnet), and discuss the impact of alternative training strategies in overcoming particular challenges of our data. The approach provides good results in terms of both detection and counting, showing performance comparable to the interpretation of human operators. As a meaningful addition, we release the pre-trained model and the Fluorescent Neuronal Cells dataset collecting pixel-level annotations of where neuronal cells are located. In this way, we hope to help future research in the area and foster innovative methodologies for tackling similar problems. The second part deals with the problem of distributed data management in the context of LHC experiments, with a focus on supporting ATLAS operations concerning data transfer failures. In particular, we analyze error messages produced by failed transfers and propose a Machine Learning pipeline that leverages the word2vec language model and K-means clustering. This provides groups of similar errors that are presented to human operators as suggestions of potential issues to investigate. The approach is demonstrated on one full day of data, showing promising ability in understanding the message content and providing meaningful groupings, in line with previously reported incidents by human operators.
Resumo:
The availability of a huge amount of source code from code archives and open-source projects opens up the possibility to merge machine learning, programming languages, and software engineering research fields. This area is often referred to as Big Code where programming languages are treated instead of natural languages while different features and patterns of code can be exploited to perform many useful tasks and build supportive tools. Among all the possible applications which can be developed within the area of Big Code, the work presented in this research thesis mainly focuses on two particular tasks: the Programming Language Identification (PLI) and the Software Defect Prediction (SDP) for source codes. Programming language identification is commonly needed in program comprehension and it is usually performed directly by developers. However, when it comes at big scales, such as in widely used archives (GitHub, Software Heritage), automation of this task is desirable. To accomplish this aim, the problem is analyzed from different points of view (text and image-based learning approaches) and different models are created paying particular attention to their scalability. Software defect prediction is a fundamental step in software development for improving quality and assuring the reliability of software products. In the past, defects were searched by manual inspection or using automatic static and dynamic analyzers. Now, the automation of this task can be tackled using learning approaches that can speed up and improve related procedures. Here, two models have been built and analyzed to detect some of the commonest bugs and errors at different code granularity levels (file and method levels). Exploited data and models’ architectures are analyzed and described in detail. Quantitative and qualitative results are reported for both PLI and SDP tasks while differences and similarities concerning other related works are discussed.
Resumo:
Statistical modelling and statistical learning theory are two powerful analytical frameworks for analyzing signals and developing efficient processing and classification algorithms. In this thesis, these frameworks are applied for modelling and processing biomedical signals in two different contexts: ultrasound medical imaging systems and primate neural activity analysis and modelling. In the context of ultrasound medical imaging, two main applications are explored: deconvolution of signals measured from a ultrasonic transducer and automatic image segmentation and classification of prostate ultrasound scans. In the former application a stochastic model of the radio frequency signal measured from a ultrasonic transducer is derived. This model is then employed for developing in a statistical framework a regularized deconvolution procedure, for enhancing signal resolution. In the latter application, different statistical models are used to characterize images of prostate tissues, extracting different features. These features are then uses to segment the images in region of interests by means of an automatic procedure based on a statistical model of the extracted features. Finally, machine learning techniques are used for automatic classification of the different region of interests. In the context of neural activity signals, an example of bio-inspired dynamical network was developed to help in studies of motor-related processes in the brain of primate monkeys. The presented model aims to mimic the abstract functionality of a cell population in 7a parietal region of primate monkeys, during the execution of learned behavioural tasks.
Resumo:
Data coming out from various researches carried out over the last years in Italy on the problem of school dispersion in secondary school show that difficulty in studying mathematics is one of the most frequent reasons of discomfort reported by students. Nevertheless, it is definitely unrealistic to think we can do without such knowledge in today society: mathematics is largely taught in secondary school and it is not confined within technical-scientific courses only. It is reasonable to say that, although students may choose academic courses that are, apparently, far away from mathematics, all students will have to come to terms, sooner or later in their life, with this subject. Among the reasons of discomfort given by the study of mathematics, some mention the very nature of this subject and in particular the complex symbolic language through which it is expressed. In fact, mathematics is a multimodal system composed by oral and written verbal texts, symbol expressions, such as formulae and equations, figures and graphs. For this, the study of mathematics represents a real challenge to those who suffer from dyslexia: this is a constitutional condition limiting people performances in relation to the activities of reading and writing and, in particular, to the study of mathematical contents. Here the difficulties in working with verbal and symbolic codes entail, in turn, difficulties in the comprehension of texts from which to deduce operations that, once combined together, would lead to the problem final solution. Information technologies may support this learning disorder effectively. However, these tools have some implementation limits, restricting their use in the study of scientific subjects. Vocal synthesis word processors are currently used to compensate difficulties in reading within the area of classical studies, but they are not used within the area of mathematics. This is because the vocal synthesis (or we should say the screen reader supporting it) is not able to interpret all that is not textual, such as symbols, images and graphs. The DISMATH software, which is the subject of this project, would allow dyslexic users to read technical-scientific documents with the help of a vocal synthesis, to understand the spatial structure of formulae and matrixes, to write documents with a technical-scientific content in a format that is compatible with main scientific editors. The system uses LaTex, a text mathematic language, as mediation system. It is set up as LaTex editor, whose graphic interface, in line with main commercial products, offers some additional specific functions with the capability to support the needs of users who are not able to manage verbal and symbolic codes on their own. LaTex is translated in real time into a standard symbolic language and it is read by vocal synthesis in natural language, in order to increase, through the bimodal representation, the ability to process information. The understanding of the mathematic formula through its reading is made possible by the deconstruction of the formula itself and its “tree” representation, so allowing to identify the logical elements composing it. Users, even without knowing LaTex language, are able to write whatever scientific document they need: in fact the symbolic elements are recalled by proper menus and automatically translated by the software managing the correct syntax. The final aim of the project, therefore, is to implement an editor enabling dyslexic people (but not only them) to manage mathematic formulae effectively, through the integration of different software tools, so allowing a better teacher/learner interaction too.
Resumo:
This Thesis is composed of a collection of works written in the period 2019-2022, whose aim is to find methodologies of Artificial Intelligence (AI) and Machine Learning to detect and classify patterns and rules in argumentative and legal texts. We define our approach “hybrid”, since we aimed at designing hybrid combinations of symbolic and sub-symbolic AI, involving both “top-down” structured knowledge and “bottom-up” data-driven knowledge. A first group of works is dedicated to the classification of argumentative patterns. Following the Waltonian model of argument and the related theory of Argumentation Schemes, these works focused on the detection of argumentative support and opposition, showing that argumentative evidences can be classified at fine-grained levels without resorting to highly engineered features. To show this, our methods involved not only traditional approaches such as TFIDF, but also some novel methods based on Tree Kernel algorithms. After the encouraging results of this first phase, we explored the use of a some emerging methodologies promoted by actors like Google, which have deeply changed NLP since 2018-19 — i.e., Transfer Learning and language models. These new methodologies markedly improved our previous results, providing us with best-performing NLP tools. Using Transfer Learning, we also performed a Sequence Labelling task to recognize the exact span of argumentative components (i.e., claims and premises), thus connecting portions of natural language to portions of arguments (i.e., to the logical-inferential dimension). The last part of our work was finally dedicated to the employment of Transfer Learning methods for the detection of rules and deontic modalities. In this case, we explored a hybrid approach which combines structured knowledge coming from two LegalXML formats (i.e., Akoma Ntoso and LegalRuleML) with sub-symbolic knowledge coming from pre-trained (and then fine-tuned) neural architectures.
Resumo:
Deep learning methods are extremely promising machine learning tools to analyze neuroimaging data. However, their potential use in clinical settings is limited because of the existing challenges of applying these methods to neuroimaging data. In this study, first a data leakage type caused by slice-level data split that is introduced during training and validation of a 2D CNN is surveyed and a quantitative assessment of the model’s performance overestimation is presented. Second, an interpretable, leakage-fee deep learning software written in a python language with a wide range of options has been developed to conduct both classification and regression analysis. The software was applied to the study of mild cognitive impairment (MCI) in patients with small vessel disease (SVD) using multi-parametric MRI data where the cognitive performance of 58 patients measured by five neuropsychological tests is predicted using a multi-input CNN model taking brain image and demographic data. Each of the cognitive test scores was predicted using different MRI-derived features. As MCI due to SVD has been hypothesized to be the effect of white matter damage, DTI-derived features MD and FA produced the best prediction outcome of the TMT-A score which is consistent with the existing literature. In a second study, an interpretable deep learning system aimed at 1) classifying Alzheimer disease and healthy subjects 2) examining the neural correlates of the disease that causes a cognitive decline in AD patients using CNN visualization tools and 3) highlighting the potential of interpretability techniques to capture a biased deep learning model is developed. Structural magnetic resonance imaging (MRI) data of 200 subjects was used by the proposed CNN model which was trained using a transfer learning-based approach producing a balanced accuracy of 71.6%. Brain regions in the frontal and parietal lobe showing the cerebral cortex atrophy were highlighted by the visualization tools.