17 resultados para MONOPHOSPHATE KINASE INHIBITORS
Resumo:
Because of its aberrant activation, the PI3K/AKT/mTOR signaling pathway represents a pharmacological target in blast cells from patients with acute myelogenous leukemia (AML). Using Reverse Phase Protein Microarrays (RPMA), we have analyzed 20 phosphorylated epitopes of the PI3K/Akt/mTor signal pathway of peripheral blood and bone marrow specimens of 84 patients with newly diagnosed AML. Fresh blast cells were grown for 2 h, 4 h or 20 h untreated or treated with a panel of phase I or phase II Akt allosteric inhibitors, either alone or in combination with the mTOR kinase inhibitor Torin1 or the broad RTK inhibitor Sunitinib. By unsupervised hierarchical clustering a strong phosphorylation/activity of most of the sampled members of the PI3K/Akt/mTOR pathway was observed in 70% of samples from AML patients. Remarkably, however, we observed that inhibition of Akt phosphorylation, as well as of its substrates, was transient, and recovered or even increased far above basal level after 20 h in 60% samples. We demonstrated that inhibition of Akt induces FOXO-dependent insulin receptor expression and IRS-1 activation, attenuating the effect of drug treatment by reactivation of PI3K/Akt. Consistent with this model we found that combined inhibition of Akt and RTKs is much more effective than either alone, revealing the adaptive capabilities of signaling networks in blast cells and highliting the limations of these drugs if used as monotherapy.
Resumo:
The data presented in this thesis was generated using molecular biology, protein chemistry and X-ray crystallography techniques. However, while the methodologies employed are essentially the same, the research work presented here refers to two different proteins, which are part of different research projects in the laboratory. For this reason, the content of this thesis is divided in two independent parts, each provided with an introduction and a general overview of the research topic and state-ofthe- art, a materials and methods section discussing the techniques used and the protocols followed, and a section where the results are presented and discussed in detail. The first half of the thesis deals with the structural characterization of the complex between human E-cadherin and three different small molecule potential inhibitors identified via a fragment-based drug discovery (FBDD) screening campaign that was conducted using a library of commercially available small fluorinated chemical fragments. For this screening phase, we used 19F-NMR as readout. The NMR experiments were done by our collaborator Dr. Marina Veronesi at the D3 PharmaChemistry division of the Italian Institute of Technology (IIT) in Genova (Italy). Functional cell adhesion assays to validate the inhibitory effects of the fragments thus identified were carried out in collaboration with Prof. Frédéric André at the University of Marseille (France). The second half of the thesis describes the structural characterization of Plasmodium falciparum Choline Kinase (PfChoK), an important pharmaceutical target in the fight against malaria, as well as the biochemical characterization of a library of potential inhibitors of PfChoK. These inhibitors were synthetized in the group of Prof. Luisa Carlota López-Cara at the Department of Pharmaceutical and Organic Chemistry of the University of Granada (Spain) in the framework of an ongoing collaboration between the two groups.