19 resultados para Laboratorio remotorobotica mobileweb applicationsmodel driven software architecture


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Il lavoro di Dottorato si è incentrato con successo sullo studio della possibilità di applicare il modello ADM1 per la descrizione e verifica di impianti industriali di digestione anaerobica. Dai dati sperimentali il modello e l'implementazione in software di analisi numerica si sono rivelati strumenti efficaci. Il software sviluppato è stato utilizzato come strumento di progettazione di impianti alimentati con biomasse innovative, analizzate con metodiche biochimiche (BMP) in scala di laboratorio. Lo studio è stato corredato con lo studio di fattibilità di un impianto reale con verifica di ottimo economico.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Intelligent systems are currently inherent to the society, supporting a synergistic human-machine collaboration. Beyond economical and climate factors, energy consumption is strongly affected by the performance of computing systems. The quality of software functioning may invalidate any improvement attempt. In addition, data-driven machine learning algorithms are the basis for human-centered applications, being their interpretability one of the most important features of computational systems. Software maintenance is a critical discipline to support automatic and life-long system operation. As most software registers its inner events by means of logs, log analysis is an approach to keep system operation. Logs are characterized as Big data assembled in large-flow streams, being unstructured, heterogeneous, imprecise, and uncertain. This thesis addresses fuzzy and neuro-granular methods to provide maintenance solutions applied to anomaly detection (AD) and log parsing (LP), dealing with data uncertainty, identifying ideal time periods for detailed software analyses. LP provides deeper semantics interpretation of the anomalous occurrences. The solutions evolve over time and are general-purpose, being highly applicable, scalable, and maintainable. Granular classification models, namely, Fuzzy set-Based evolving Model (FBeM), evolving Granular Neural Network (eGNN), and evolving Gaussian Fuzzy Classifier (eGFC), are compared considering the AD problem. The evolving Log Parsing (eLP) method is proposed to approach the automatic parsing applied to system logs. All the methods perform recursive mechanisms to create, update, merge, and delete information granules according with the data behavior. For the first time in the evolving intelligent systems literature, the proposed method, eLP, is able to process streams of words and sentences. Essentially, regarding to AD accuracy, FBeM achieved (85.64+-3.69)%; eGNN reached (96.17+-0.78)%; eGFC obtained (92.48+-1.21)%; and eLP reached (96.05+-1.04)%. Besides being competitive, eLP particularly generates a log grammar, and presents a higher level of model interpretability.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Nuclear cross sections are the pillars onto which the transport simulation of particles and radiations is built on. Since the nuclear data libraries production chain is extremely complex and made of different steps, it is mandatory to foresee stringent verification and validation procedures to be applied to it. The work here presented has been focused on the development of a new python based software called JADE, whose objective is to give a significant help in increasing the level of automation and standardization of these procedures in order to reduce the time passing between new libraries releases and, at the same time, increasing their quality. After an introduction to nuclear fusion (which is the field where the majority of the V\&V action was concentrated for the time being) and to the simulation of particles and radiations transport, the motivations leading to JADE development are discussed. Subsequently, the code general architecture and the implemented benchmarks (both experimental and computational) are described. After that, the results coming from the major application of JADE during the research years are presented. At last, after a final discussion on the objective reached by JADE, the possible brief, mid and long time developments for the project are discussed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Imaging technologies are widely used in application fields such as natural sciences, engineering, medicine, and life sciences. A broad class of imaging problems reduces to solve ill-posed inverse problems (IPs). Traditional strategies to solve these ill-posed IPs rely on variational regularization methods, which are based on minimization of suitable energies, and make use of knowledge about the image formation model (forward operator) and prior knowledge on the solution, but lack in incorporating knowledge directly from data. On the other hand, the more recent learned approaches can easily learn the intricate statistics of images depending on a large set of data, but do not have a systematic method for incorporating prior knowledge about the image formation model. The main purpose of this thesis is to discuss data-driven image reconstruction methods which combine the benefits of these two different reconstruction strategies for the solution of highly nonlinear ill-posed inverse problems. Mathematical formulation and numerical approaches for image IPs, including linear as well as strongly nonlinear problems are described. More specifically we address the Electrical impedance Tomography (EIT) reconstruction problem by unrolling the regularized Gauss-Newton method and integrating the regularization learned by a data-adaptive neural network. Furthermore we investigate the solution of non-linear ill-posed IPs introducing a deep-PnP framework that integrates the graph convolutional denoiser into the proximal Gauss-Newton method with a practical application to the EIT, a recently introduced promising imaging technique. Efficient algorithms are then applied to the solution of the limited electrods problem in EIT, combining compressive sensing techniques and deep learning strategies. Finally, a transformer-based neural network architecture is adapted to restore the noisy solution of the Computed Tomography problem recovered using the filtered back-projection method.