17 resultados para Key process indicators


Relevância:

30.00% 30.00%

Publicador:

Resumo:

With an increasing demand for rural resources and land, new challenges are approaching affecting and restructuring the European countryside. While creating opportunities for rural living, it has also opened a discussion on rural gentrification risks. The concept of rural gentrification encircles the influx of new residents leading to an economic upgrade of an area making it unaffordable for local inhabitants to stay in. Rural gentrification occurs in areas perceived as attractive. Paradoxically, in-migrants re-shape their surrounding landscape. Rural gentrification may not only cause displacement of people but also landscape values. Thus, this research aims to understand the twofold role of landscape in rural gentrification theory: as a possible driver to attract residents and as a product shaped by its residents. To understand the potential gentrifiers’ decision process, this research has provided a collection of drivers behind in-migration. Moreover, essential indicators of rural gentrification have been collected from previous studies. Yet, the available indicators do not contain measures to understand related landscape changes. To fill this gap, after analysing established landscape assessment methodologies, evaluating the relevance for assessing gentrification, a new Landscape Assessment approach is proposed. This method introduces a novel approach to capture landscape change caused by gentrification through a historical depth. The measures to study gentrification was applied on Gotland, Sweden. The study showed a population stagnating while the number of properties increased, and housing prices raised. These factors are not indicating positive growth but risks of gentrification. Then, the research applied the proposed Landscape Assessment method for areas exposed to gentrification. Results suggest that landscape change takes place on a local scale and could over time endanger key characteristics. The methodology contributes to a discussion on grasping nuances within the rural context. It has also proven useful for indicating accumulative changes, which is necessary in managing landscape values.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The world grapples with climate change from fossil fuel reliance, prompting Europe to pivot to renewable energy. Among renewables, biomass is a bioenergy and bio-carbon source, used to create high-value biomolecules, replacing fossil-based products. Alkyl levulinates, derived from biomass, hold promise as bio-additives and biofuels, especially via acid solvolysis of hexose sugars, necessitating further exploration. Alkyl levulinate's potential extends to converting into γ-valerolactone (GVL), a bio-solvent produced via hydrogenation with molecular-hydrogen. Hydrogen, a key reagent and energy carrier, aids renewable energy integration. This thesis delves into a biorefinery system study, aligning with sustainability goals, integrating biomass valorization, energy production, and hydrogen generation. It investigates optimizing technologies for butyl levulinate production and subsequent GVL hydrogenation. Sustainability remains pivotal, reflecting the global shift towards renewable and carbon bio-resources. The research initially focuses on experimenting with the optimal technology for producing butyl levulinate from biomass-derived hexose fructose. It examines the solvolysis process, investigating optimal conditions, kinetic modeling, and the impact of solvents on fructose conversion. The subsequent part concentrates on the technological aspect of hydrogenating butyl levulinate into GVL. It includes conceptual design, simulation, and optimization of the fructose-to-GVL process scheme based on process intensification. In the final part, the study applies the process to a real case study in Normandy, France, adapting it to local biomass availability and wind energy. It defines a methodology for designing and integrating the energy-supply system, evaluating different scenarios. Sustainability assessment using economic, environmental, and social indicators culminates in an overall sustainability index, indicating scenarios integrating the GVL biorefinery system with wind power and hydrogen energy storage as promising due to high profitability and reduced environmental impact. Sensitivity analyses validate the methodology's reliability, potentially extending to other technological systems.