42 resultados para Images - Computational methods


Relevância:

80.00% 80.00%

Publicador:

Resumo:

In recent decades, two prominent trends have influenced the data modeling field, namely network analysis and machine learning. This thesis explores the practical applications of these techniques within the domain of drug research, unveiling their multifaceted potential for advancing our comprehension of complex biological systems. The research undertaken during this PhD program is situated at the intersection of network theory, computational methods, and drug research. Across six projects presented herein, there is a gradual increase in model complexity. These projects traverse a diverse range of topics, with a specific emphasis on drug repurposing and safety in the context of neurological diseases. The aim of these projects is to leverage existing biomedical knowledge to develop innovative approaches that bolster drug research. The investigations have produced practical solutions, not only providing insights into the intricacies of biological systems, but also allowing the creation of valuable tools for their analysis. In short, the achievements are: • A novel computational algorithm to identify adverse events specific to fixed-dose drug combinations. • A web application that tracks the clinical drug research response to SARS-CoV-2. • A Python package for differential gene expression analysis and the identification of key regulatory "switch genes". • The identification of pivotal events causing drug-induced impulse control disorders linked to specific medications. • An automated pipeline for discovering potential drug repurposing opportunities. • The creation of a comprehensive knowledge graph and development of a graph machine learning model for predictions. Collectively, these projects illustrate diverse applications of data science and network-based methodologies, highlighting the profound impact they can have in supporting drug research activities.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

Some fundamental biological processes such as embryonic development have been preserved during evolution and are common to species belonging to different phylogenetic positions, but are nowadays largely unknown. The understanding of cell morphodynamics leading to the formation of organized spatial distribution of cells such as tissues and organs can be achieved through the reconstruction of cells shape and position during the development of a live animal embryo. We design in this work a chain of image processing methods to automatically segment and track cells nuclei and membranes during the development of a zebrafish embryo, which has been largely validates as model organism to understand vertebrate development, gene function and healingrepair mechanisms in vertebrates. The embryo is previously labeled through the ubiquitous expression of fluorescent proteins addressed to cells nuclei and membranes, and temporal sequences of volumetric images are acquired with laser scanning microscopy. Cells position is detected by processing nuclei images either through the generalized form of the Hough transform or identifying nuclei position with local maxima after a smoothing preprocessing step. Membranes and nuclei shapes are reconstructed by using PDEs based variational techniques such as the Subjective Surfaces and the Chan Vese method. Cells tracking is performed by combining informations previously detected on cells shape and position with biological regularization constraints. Our results are manually validated and reconstruct the formation of zebrafish brain at 7-8 somite stage with all the cells tracked starting from late sphere stage with less than 2% error for at least 6 hours. Our reconstruction opens the way to a systematic investigation of cellular behaviors, of clonal origin and clonal complexity of brain organs, as well as the contribution of cell proliferation modes and cell movements to the formation of local patterns and morphogenetic fields.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Proper ion channels’ functioning is a prerequisite for a normal cell and disorders involving ion channels, or channelopathies, underlie many human diseases. Long QT syndromes (LQTS) for example may arise from the malfunctioning of hERG channel, caused either by the binding of drugs or mutations in HERG gene. In the first part of this thesis I present a framework to investigate the mechanism of ion conduction through hERG channel. The free energy profile governing the elementary steps of ion translocation in the pore was computed by means of umbrella sampling simulations. Compared to previous studies, we detected a different dynamic behavior: according to our data hERG is more likely to mediate a conduction mechanism which has been referred to as “single-vacancy-like” by Roux and coworkers (2001), rather then a “knock-on” mechanism. The same protocol was applied to a model of hERG presenting the Gly628Ser mutation, found to be cause of congenital LQTS. The results provided interesting insights about the reason of the malfunctioning of the mutant channel. Since they have critical functions in viruses’ life cycle, viral ion channels, such as M2 proton channel, are considered attractive targets for antiviral therapy. A deep knowledge of the mechanisms that the virus employs to survive in the host cell is of primary importance in the identification of new antiviral strategies. In the second part of this thesis I shed light on the role that M2 plays in the control of electrical potential inside the virus, being the charge equilibration a condition required to allow proton influx. The ion conduction through M2 was simulated using metadynamics technique. Based on our results we suggest that a potential anion-mediated cation-proton exchange, as well as a direct anion-proton exchange could both contribute to explain the activity of the M2 channel.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The goal of the present research is to define a Semantic Web framework for precedent modelling, by using knowledge extracted from text, metadata, and rules, while maintaining a strong text-to-knowledge morphism between legal text and legal concepts, in order to fill the gap between legal document and its semantics. The framework is composed of four different models that make use of standard languages from the Semantic Web stack of technologies: a document metadata structure, modelling the main parts of a judgement, and creating a bridge between a text and its semantic annotations of legal concepts; a legal core ontology, modelling abstract legal concepts and institutions contained in a rule of law; a legal domain ontology, modelling the main legal concepts in a specific domain concerned by case-law; an argumentation system, modelling the structure of argumentation. The input to the framework includes metadata associated with judicial concepts, and an ontology library representing the structure of case-law. The research relies on the previous efforts of the community in the field of legal knowledge representation and rule interchange for applications in the legal domain, in order to apply the theory to a set of real legal documents, stressing the OWL axioms definitions as much as possible in order to enable them to provide a semantically powerful representation of the legal document and a solid ground for an argumentation system using a defeasible subset of predicate logics. It appears that some new features of OWL2 unlock useful reasoning features for legal knowledge, especially if combined with defeasible rules and argumentation schemes. The main task is thus to formalize legal concepts and argumentation patterns contained in a judgement, with the following requirement: to check, validate and reuse the discourse of a judge - and the argumentation he produces - as expressed by the judicial text.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In this thesis the evolution of the techno-social systems analysis methods will be reported, through the explanation of the various research experience directly faced. The first case presented is a research based on data mining of a dataset of words association named Human Brain Cloud: validation will be faced and, also through a non-trivial modeling, a better understanding of language properties will be presented. Then, a real complex system experiment will be introduced: the WideNoise experiment in the context of the EveryAware european project. The project and the experiment course will be illustrated and data analysis will be displayed. Then the Experimental Tribe platform for social computation will be introduced . It has been conceived to help researchers in the implementation of web experiments, and aims also to catalyze the cumulative growth of experimental methodologies and the standardization of tools cited above. In the last part, three other research experience which already took place on the Experimental Tribe platform will be discussed in detail, from the design of the experiment to the analysis of the results and, eventually, to the modeling of the systems involved. The experiments are: CityRace, about the measurement of human traffic-facing strategies; laPENSOcosì, aiming to unveil the political opinion structure; AirProbe, implemented again in the EveryAware project framework, which consisted in monitoring air quality opinion shift of a community informed about local air pollution. At the end, the evolution of the technosocial systems investigation methods shall emerge together with the opportunities and the threats offered by this new scientific path.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Ion channels are protein molecules, embedded in the lipid bilayer of the cell membranes. They act as powerful sensing elements switching chemicalphysical stimuli into ion-fluxes. At a glance, ion channels are water-filled pores, which can open and close in response to different stimuli (gating), and one once open select the permeating ion species (selectivity). They play a crucial role in several physiological functions, like nerve transmission, muscular contraction, and secretion. Besides, ion channels can be used in technological applications for different purpose (sensing of organic molecules, DNA sequencing). As a result, there is remarkable interest in understanding the molecular determinants of the channel functioning. Nowadays, both the functional and the structural characteristics of ion channels can be experimentally solved. The purpose of this thesis was to investigate the structure-function relation in ion channels, by computational techniques. Most of the analyses focused on the mechanisms of ion conduction, and the numerical methodologies to compute the channel conductance. The standard techniques for atomistic simulation of complex molecular systems (Molecular Dynamics) cannot be routinely used to calculate ion fluxes in membrane channels, because of the high computational resources needed. The main step forward of the PhD research activity was the development of a computational algorithm for the calculation of ion fluxes in protein channels. The algorithm - based on the electrodiffusion theory - is computational inexpensive, and was used for an extensive analysis on the molecular determinants of the channel conductance. The first record of ion-fluxes through a single protein channel dates back to 1976, and since then measuring the single channel conductance has become a standard experimental procedure. Chapter 1 introduces ion channels, and the experimental techniques used to measure the channel currents. The abundance of functional data (channel currents) does not match with an equal abundance of structural data. The bacterial potassium channel KcsA was the first selective ion channels to be experimentally solved (1998), and after KcsA the structures of four different potassium channels were revealed. These experimental data inspired a new era in ion channel modeling. Once the atomic structures of channels are known, it is possible to define mathematical models based on physical descriptions of the molecular systems. These physically based models can provide an atomic description of ion channel functioning, and predict the effect of structural changes. Chapter 2 introduces the computation methods used throughout the thesis to model ion channels functioning at the atomic level. In Chapter 3 and Chapter 4 the ion conduction through potassium channels is analyzed, by an approach based on the Poisson-Nernst-Planck electrodiffusion theory. In the electrodiffusion theory ion conduction is modeled by the drift-diffusion equations, thus describing the ion distributions by continuum functions. The numerical solver of the Poisson- Nernst-Planck equations was tested in the KcsA potassium channel (Chapter 3), and then used to analyze how the atomic structure of the intracellular vestibule of potassium channels affects the conductance (Chapter 4). As a major result, a correlation between the channel conductance and the potassium concentration in the intracellular vestibule emerged. The atomic structure of the channel modulates the potassium concentration in the vestibule, thus its conductance. This mechanism explains the phenotype of the BK potassium channels, a sub-family of potassium channels with high single channel conductance. The functional role of the intracellular vestibule is also the subject of Chapter 5, where the affinity of the potassium channels hEag1 (involved in tumour-cell proliferation) and hErg (important in the cardiac cycle) for several pharmaceutical drugs was compared. Both experimental measurements and molecular modeling were used in order to identify differences in the blocking mechanism of the two channels, which could be exploited in the synthesis of selective blockers. The experimental data pointed out the different role of residue mutations in the blockage of hEag1 and hErg, and the molecular modeling provided a possible explanation based on different binding sites in the intracellular vestibule. Modeling ion channels at the molecular levels relates the functioning of a channel to its atomic structure (Chapters 3-5), and can also be useful to predict the structure of ion channels (Chapter 6-7). In Chapter 6 the structure of the KcsA potassium channel depleted from potassium ions is analyzed by molecular dynamics simulations. Recently, a surprisingly high osmotic permeability of the KcsA channel was experimentally measured. All the available crystallographic structure of KcsA refers to a channel occupied by potassium ions. To conduct water molecules potassium ions must be expelled from KcsA. The structure of the potassium-depleted KcsA channel and the mechanism of water permeation are still unknown, and have been investigated by numerical simulations. Molecular dynamics of KcsA identified a possible atomic structure of the potassium-depleted KcsA channel, and a mechanism for water permeation. The depletion from potassium ions is an extreme situation for potassium channels, unlikely in physiological conditions. However, the simulation of such an extreme condition could help to identify the structural conformations, so the functional states, accessible to potassium ion channels. The last chapter of the thesis deals with the atomic structure of the !- Hemolysin channel. !-Hemolysin is the major determinant of the Staphylococcus Aureus toxicity, and is also the prototype channel for a possible usage in technological applications. The atomic structure of !- Hemolysin was revealed by X-Ray crystallography, but several experimental evidences suggest the presence of an alternative atomic structure. This alternative structure was predicted, combining experimental measurements of single channel currents and numerical simulations. This thesis is organized in two parts, in the first part an overview on ion channels and on the numerical methods adopted throughout the thesis is provided, while the second part describes the research projects tackled in the course of the PhD programme. The aim of the research activity was to relate the functional characteristics of ion channels to their atomic structure. In presenting the different research projects, the role of numerical simulations to analyze the structure-function relation in ion channels is highlighted.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Peer-to-Peer network paradigm is drawing the attention of both final users and researchers for its features. P2P networks shift from the classic client-server approach to a high level of decentralization where there is no central control and all the nodes should be able not only to require services, but to provide them to other peers as well. While on one hand such high level of decentralization might lead to interesting properties like scalability and fault tolerance, on the other hand it implies many new problems to deal with. A key feature of many P2P systems is openness, meaning that everybody is potentially able to join a network with no need for subscription or payment systems. The combination of openness and lack of central control makes it feasible for a user to free-ride, that is to increase its own benefit by using services without allocating resources to satisfy other peers’ requests. One of the main goals when designing a P2P system is therefore to achieve cooperation between users. Given the nature of P2P systems based on simple local interactions of many peers having partial knowledge of the whole system, an interesting way to achieve desired properties on a system scale might consist in obtaining them as emergent properties of the many interactions occurring at local node level. Two methods are typically used to face the problem of cooperation in P2P networks: 1) engineering emergent properties when designing the protocol; 2) study the system as a game and apply Game Theory techniques, especially to find Nash Equilibria in the game and to reach them making the system stable against possible deviant behaviors. In this work we present an evolutionary framework to enforce cooperative behaviour in P2P networks that is alternative to both the methods mentioned above. Our approach is based on an evolutionary algorithm inspired by computational sociology and evolutionary game theory, consisting in having each peer periodically trying to copy another peer which is performing better. The proposed algorithms, called SLAC and SLACER, draw inspiration from tag systems originated in computational sociology, the main idea behind the algorithm consists in having low performance nodes copying high performance ones. The algorithm is run locally by every node and leads to an evolution of the network both from the topology and from the nodes’ strategy point of view. Initial tests with a simple Prisoners’ Dilemma application show how SLAC is able to bring the network to a state of high cooperation independently from the initial network conditions. Interesting results are obtained when studying the effect of cheating nodes on SLAC algorithm. In fact in some cases selfish nodes rationally exploiting the system for their own benefit can actually improve system performance from the cooperation formation point of view. The final step is to apply our results to more realistic scenarios. We put our efforts in studying and improving the BitTorrent protocol. BitTorrent was chosen not only for its popularity but because it has many points in common with SLAC and SLACER algorithms, ranging from the game theoretical inspiration (tit-for-tat-like mechanism) to the swarms topology. We discovered fairness, meant as ratio between uploaded and downloaded data, to be a weakness of the original BitTorrent protocol and we drew inspiration from the knowledge of cooperation formation and maintenance mechanism derived from the development and analysis of SLAC and SLACER, to improve fairness and tackle freeriding and cheating in BitTorrent. We produced an extension of BitTorrent called BitFair that has been evaluated through simulation and has shown the abilities of enforcing fairness and tackling free-riding and cheating nodes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Statistical modelling and statistical learning theory are two powerful analytical frameworks for analyzing signals and developing efficient processing and classification algorithms. In this thesis, these frameworks are applied for modelling and processing biomedical signals in two different contexts: ultrasound medical imaging systems and primate neural activity analysis and modelling. In the context of ultrasound medical imaging, two main applications are explored: deconvolution of signals measured from a ultrasonic transducer and automatic image segmentation and classification of prostate ultrasound scans. In the former application a stochastic model of the radio frequency signal measured from a ultrasonic transducer is derived. This model is then employed for developing in a statistical framework a regularized deconvolution procedure, for enhancing signal resolution. In the latter application, different statistical models are used to characterize images of prostate tissues, extracting different features. These features are then uses to segment the images in region of interests by means of an automatic procedure based on a statistical model of the extracted features. Finally, machine learning techniques are used for automatic classification of the different region of interests. In the context of neural activity signals, an example of bio-inspired dynamical network was developed to help in studies of motor-related processes in the brain of primate monkeys. The presented model aims to mimic the abstract functionality of a cell population in 7a parietal region of primate monkeys, during the execution of learned behavioural tasks.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Machine learning comprises a series of techniques for automatic extraction of meaningful information from large collections of noisy data. In many real world applications, data is naturally represented in structured form. Since traditional methods in machine learning deal with vectorial information, they require an a priori form of preprocessing. Among all the learning techniques for dealing with structured data, kernel methods are recognized to have a strong theoretical background and to be effective approaches. They do not require an explicit vectorial representation of the data in terms of features, but rely on a measure of similarity between any pair of objects of a domain, the kernel function. Designing fast and good kernel functions is a challenging problem. In the case of tree structured data two issues become relevant: kernel for trees should not be sparse and should be fast to compute. The sparsity problem arises when, given a dataset and a kernel function, most structures of the dataset are completely dissimilar to one another. In those cases the classifier has too few information for making correct predictions on unseen data. In fact, it tends to produce a discriminating function behaving as the nearest neighbour rule. Sparsity is likely to arise for some standard tree kernel functions, such as the subtree and subset tree kernel, when they are applied to datasets with node labels belonging to a large domain. A second drawback of using tree kernels is the time complexity required both in learning and classification phases. Such a complexity can sometimes prevents the kernel application in scenarios involving large amount of data. This thesis proposes three contributions for resolving the above issues of kernel for trees. A first contribution aims at creating kernel functions which adapt to the statistical properties of the dataset, thus reducing its sparsity with respect to traditional tree kernel functions. Specifically, we propose to encode the input trees by an algorithm able to project the data onto a lower dimensional space with the property that similar structures are mapped similarly. By building kernel functions on the lower dimensional representation, we are able to perform inexact matchings between different inputs in the original space. A second contribution is the proposal of a novel kernel function based on the convolution kernel framework. Convolution kernel measures the similarity of two objects in terms of the similarities of their subparts. Most convolution kernels are based on counting the number of shared substructures, partially discarding information about their position in the original structure. The kernel function we propose is, instead, especially focused on this aspect. A third contribution is devoted at reducing the computational burden related to the calculation of a kernel function between a tree and a forest of trees, which is a typical operation in the classification phase and, for some algorithms, also in the learning phase. We propose a general methodology applicable to convolution kernels. Moreover, we show an instantiation of our technique when kernels such as the subtree and subset tree kernels are employed. In those cases, Direct Acyclic Graphs can be used to compactly represent shared substructures in different trees, thus reducing the computational burden and storage requirements.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The goal of this thesis work is to develop a computational method based on machine learning techniques for predicting disulfide-bonding states of cysteine residues in proteins, which is a sub-problem of a bigger and yet unsolved problem of protein structure prediction. Improvement in the prediction of disulfide bonding states of cysteine residues will help in putting a constraint in the three dimensional (3D) space of the respective protein structure, and thus will eventually help in the prediction of 3D structure of proteins. Results of this work will have direct implications in site-directed mutational studies of proteins, proteins engineering and the problem of protein folding. We have used a combination of Artificial Neural Network (ANN) and Hidden Markov Model (HMM), the so-called Hidden Neural Network (HNN) as a machine learning technique to develop our prediction method. By using different global and local features of proteins (specifically profiles, parity of cysteine residues, average cysteine conservation, correlated mutation, sub-cellular localization, and signal peptide) as inputs and considering Eukaryotes and Prokaryotes separately we have reached to a remarkable accuracy of 94% on cysteine basis for both Eukaryotic and Prokaryotic datasets, and an accuracy of 90% and 93% on protein basis for Eukaryotic dataset and Prokaryotic dataset respectively. These accuracies are best so far ever reached by any existing prediction methods, and thus our prediction method has outperformed all the previously developed approaches and therefore is more reliable. Most interesting part of this thesis work is the differences in the prediction performances of Eukaryotes and Prokaryotes at the basic level of input coding when ‘profile’ information was given as input to our prediction method. And one of the reasons for this we discover is the difference in the amino acid composition of the local environment of bonded and free cysteine residues in Eukaryotes and Prokaryotes. Eukaryotic bonded cysteine examples have a ‘symmetric-cysteine-rich’ environment, where as Prokaryotic bonded examples lack it.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this thesis two major topics inherent with medical ultrasound images are addressed: deconvolution and segmentation. In the first case a deconvolution algorithm is described allowing statistically consistent maximum a posteriori estimates of the tissue reflectivity to be restored. These estimates are proven to provide a reliable source of information for achieving an accurate characterization of biological tissues through the ultrasound echo. The second topic involves the definition of a semi automatic algorithm for myocardium segmentation in 2D echocardiographic images. The results show that the proposed method can reduce inter- and intra observer variability in myocardial contours delineation and is feasible and accurate even on clinical data.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Here I will focus on three main topics that best address and include the projects I have been working in during my three year PhD period that I have spent in different research laboratories addressing both computationally and practically important problems all related to modern molecular genomics. The first topic is the use of livestock species (pigs) as a model of obesity, a complex human dysfunction. My efforts here concern the detection and annotation of Single Nucleotide Polymorphisms. I developed a pipeline for mining human and porcine sequences. Starting from a set of human genes related with obesity the platform returns a list of annotated porcine SNPs extracted from a new set of potential obesity-genes. 565 of these SNPs were analyzed on an Illumina chip to test the involvement in obesity on a population composed by more than 500 pigs. Results will be discussed. All the computational analysis and experiments were done in collaboration with the Biocomputing group and Dr.Luca Fontanesi, respectively, under the direction of prof. Rita Casadio at the Bologna University, Italy. The second topic concerns developing a methodology, based on Factor Analysis, to simultaneously mine information from different levels of biological organization. With specific test cases we develop models of the complexity of the mRNA-miRNA molecular interaction in brain tumors measured indirectly by microarray and quantitative PCR. This work was done under the supervision of Prof. Christine Nardini, at the “CAS-MPG Partner Institute for Computational Biology” of Shangai, China (co-founded by the Max Planck Society and the Chinese Academy of Sciences jointly) The third topic concerns the development of a new method to overcome the variety of PCR technologies routinely adopted to characterize unknown flanking DNA regions of a viral integration locus of the human genome after clinical gene therapy. This new method is entirely based on next generation sequencing and it reduces the time required to detect insertion sites, decreasing the complexity of the procedure. This work was done in collaboration with the group of Dr. Manfred Schmidt at the Nationales Centrum für Tumorerkrankungen (Heidelberg, Germany) supervised by Dr. Annette Deichmann and Dr. Ali Nowrouzi. Furthermore I add as an Appendix the description of a R package for gene network reconstruction that I helped to develop for scientific usage (http://www.bioconductor.org/help/bioc-views/release/bioc/html/BUS.html).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

3D video-fluoroscopy is an accurate but cumbersome technique to estimate natural or prosthetic human joint kinematics. This dissertation proposes innovative methodologies to improve the 3D fluoroscopic analysis reliability and usability. Being based on direct radiographic imaging of the joint, and avoiding soft tissue artefact that limits the accuracy of skin marker based techniques, the fluoroscopic analysis has a potential accuracy of the order of mm/deg or better. It can provide fundamental informations for clinical and methodological applications, but, notwithstanding the number of methodological protocols proposed in the literature, time consuming user interaction is exploited to obtain consistent results. The user-dependency prevented a reliable quantification of the actual accuracy and precision of the methods, and, consequently, slowed down the translation to the clinical practice. The objective of the present work was to speed up this process introducing methodological improvements in the analysis. In the thesis, the fluoroscopic analysis was characterized in depth, in order to evaluate its pros and cons, and to provide reliable solutions to overcome its limitations. To this aim, an analytical approach was followed. The major sources of error were isolated with in-silico preliminary studies as: (a) geometric distortion and calibration errors, (b) 2D images and 3D models resolutions, (c) incorrect contour extraction, (d) bone model symmetries, (e) optimization algorithm limitations, (f) user errors. The effect of each criticality was quantified, and verified with an in-vivo preliminary study on the elbow joint. The dominant source of error was identified in the limited extent of the convergence domain for the local optimization algorithms, which forced the user to manually specify the starting pose for the estimating process. To solve this problem, two different approaches were followed: to increase the optimal pose convergence basin, the local approach used sequential alignments of the 6 degrees of freedom in order of sensitivity, or a geometrical feature-based estimation of the initial conditions for the optimization; the global approach used an unsupervised memetic algorithm to optimally explore the search domain. The performances of the technique were evaluated with a series of in-silico studies and validated in-vitro with a phantom based comparison with a radiostereometric gold-standard. The accuracy of the method is joint-dependent, and for the intact knee joint, the new unsupervised algorithm guaranteed a maximum error lower than 0.5 mm for in-plane translations, 10 mm for out-of-plane translation, and of 3 deg for rotations in a mono-planar setup; and lower than 0.5 mm for translations and 1 deg for rotations in a bi-planar setups. The bi-planar setup is best suited when accurate results are needed, such as for methodological research studies. The mono-planar analysis may be enough for clinical application when the analysis time and cost may be an issue. A further reduction of the user interaction was obtained for prosthetic joints kinematics. A mixed region-growing and level-set segmentation method was proposed and halved the analysis time, delegating the computational burden to the machine. In-silico and in-vivo studies demonstrated that the reliability of the new semiautomatic method was comparable to a user defined manual gold-standard. The improved fluoroscopic analysis was finally applied to a first in-vivo methodological study on the foot kinematics. Preliminary evaluations showed that the presented methodology represents a feasible gold-standard for the validation of skin marker based foot kinematics protocols.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Myocardial perfusion quantification by means of Contrast-Enhanced Cardiac Magnetic Resonance images relies on time consuming frame-by-frame manual tracing of regions of interest. In this Thesis, a novel automated technique for myocardial segmentation and non-rigid registration as a basis for perfusion quantification is presented. The proposed technique is based on three steps: reference frame selection, myocardial segmentation and non-rigid registration. In the first step, the reference frame in which both endo- and epicardial segmentation will be performed is chosen. Endocardial segmentation is achieved by means of a statistical region-based level-set technique followed by a curvature-based regularization motion. Epicardial segmentation is achieved by means of an edge-based level-set technique followed again by a regularization motion. To take into account the changes in position, size and shape of myocardium throughout the sequence due to out of plane respiratory motion, a non-rigid registration algorithm is required. The proposed non-rigid registration scheme consists in a novel multiscale extension of the normalized cross-correlation algorithm in combination with level-set methods. The myocardium is then divided into standard segments. Contrast enhancement curves are computed measuring the mean pixel intensity of each segment over time, and perfusion indices are extracted from each curve. The overall approach has been tested on synthetic and real datasets. For validation purposes, the sequences have been manually traced by an experienced interpreter, and contrast enhancement curves as well as perfusion indices have been computed. Comparisons between automatically extracted and manually obtained contours and enhancement curves showed high inter-technique agreement. Comparisons of perfusion indices computed using both approaches against quantitative coronary angiography and visual interpretation demonstrated that the two technique have similar diagnostic accuracy. In conclusion, the proposed technique allows fast, automated and accurate measurement of intra-myocardial contrast dynamics, and may thus address the strong clinical need for quantitative evaluation of myocardial perfusion.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This thesis investigates two distinct research topics. The main topic (Part I) is the computational modelling of cardiomyocytes derived from human stem cells, both embryonic (hESC-CM) and induced-pluripotent (hiPSC-CM). The aim of this research line lies in developing models of the electrophysiology of hESC-CM and hiPSC-CM in order to integrate the available experimental data and getting in-silico models to be used for studying/making new hypotheses/planning experiments on aspects not fully understood yet, such as the maturation process, the functionality of the Ca2+ hangling or why the hESC-CM/hiPSC-CM action potentials (APs) show some differences with respect to APs from adult cardiomyocytes. Chapter I.1 introduces the main concepts about hESC-CMs/hiPSC-CMs, the cardiac AP, and computational modelling. Chapter I.2 presents the hESC-CM AP model, able to simulate the maturation process through two developmental stages, Early and Late, based on experimental and literature data. Chapter I.3 describes the hiPSC-CM AP model, able to simulate the ventricular-like and atrial-like phenotypes. This model was used to assess which currents are responsible for the differences between the ventricular-like AP and the adult ventricular AP. The secondary topic (Part II) consists in the study of texture descriptors for biological image processing. Chapter II.1 provides an overview on important texture descriptors such as Local Binary Pattern or Local Phase Quantization. Moreover the non-binary coding and the multi-threshold approach are here introduced. Chapter II.2 shows that the non-binary coding and the multi-threshold approach improve the classification performance of cellular/sub-cellular part images, taken from six datasets. Chapter II.3 describes the case study of the classification of indirect immunofluorescence images of HEp2 cells, used for the antinuclear antibody clinical test. Finally the general conclusions are reported.