24 resultados para Hitsauksen suurtehomenetelmät, High productive welding processes


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The research activities described in the present thesis have been oriented to the design and development of components and technological processes aimed at optimizing the performance of plasma sources in advanced in material treatments. Consumables components for high definition plasma arc cutting (PAC) torches were studied and developed. Experimental activities have in particular focussed on the modifications of the emissive insert with respect to the standard electrode configuration, which comprises a press fit hafnium insert in a copper body holder, to improve its durability. Based on a deep analysis of both the scientific and patent literature, different solutions were proposed and tested. First, the behaviour of Hf cathodes when operating at high current levels (250A) in oxidizing atmosphere has been experimentally investigated optimizing, with respect to expected service life, the initial shape of the electrode emissive surface. Moreover, the microstructural modifications of the Hf insert in PAC electrodes were experimentally investigated during first cycles, in order to understand those phenomena occurring on and under the Hf emissive surface and involved in the electrode erosion process. Thereafter, the research activity focussed on producing, characterizing and testing prototypes of composite inserts, combining powders of a high thermal conductibility (Cu, Ag) and high thermionic emissivity (Hf, Zr) materials The complexity of the thermal plasma torch environment required and integrated approach also involving physical modelling. Accordingly, a detailed line-by-line method was developed to compute the net emission coefficient of Ar plasmas at temperatures ranging from 3000 K to 25000 K and pressure ranging from 50 kPa to 200 kPa, for optically thin and partially autoabsorbed plasmas. Finally, prototypal electrodes were studied and realized for a newly developed plasma source, based on the plasma needle concept and devoted to the generation of atmospheric pressure non-thermal plasmas for biomedical applications.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The growing interest in environmental protection has led to the development of emerging biotechnologies for environmental remediation also introducing the biorefinery concept. This work mainly aimed to evaluate the applicability of innovative biotechnologies for environmental remediation and bioenergy production, throught fermentative processes. The investigated biotechnologies for waste and wastewater treatment and for the valorisation of specific feedstocks and energy recovery, were mainly focused on four research lines. 1. Biotechnology for textile wastewater treatment and water reuse that involving anaerobic and aerobic processes in combination with membrane technologies. Combinations of different treatments were also implemented for water reuse in a textile company. 2. Biotechnology for the treatment of solid waste and leachate in landfill and for biogas production. Landfill operated as Bioreactor with recirculation of the generated leachate was proposed for organic matter biostabilisation and for ammonia removal from leachate by favouring the Anammox process. 3. An innovative two-stage anaerobic process for effective codigestion of waste from the dairy industry, as cheese whey and dairy manure, was studied by combining conventional fermentative processes with a simplified system design for enhancing biomethanisation. 4) The valorisation of the glycerol waste as surplus by-product of the biodiesel industry was investigated via microbial conversion to value-added chemicals, as 1,3-propanediol. The investigated fermentative processes have been successfully implemented and reached high yields of the produced bio-chemical. The studied biotechnological systems proved to be feasible for environmental remediation and bioenergy and chemicals production.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The research of new advanced processes for syngas production is a part of a European project for the production of a new Gas to Liquid Process (NextGTL). The crucial points in the production of GTL process are the energy required for the air separation used in autothermal reforming or the heat required for steam reforming and the efficiency in carbon utilization. Therefore a new multistep oxy-reforming process scheme was developed at lower temperature with intermediate H2 membrane separation to improve the crucial parameter. The process is characterized by a S/C of 0.7 and O2/C of 0.21 having a smoothed temperature profile in which kinetic regime is easily obtained. Active catalysts for low temperature oxy-reforming process have been studied working at low pressure to discriminate among the catalyst and at high pressure to prove it on industrial condition. It allows the selection of the Rh as active phase among single and bimetallic VIII group metal. The study of the matrix composition and thermal treatment has been carried out on Rh-Mg/Al hydrotalcite selected as reference catalyst. The research to optimize the catalyst lead to enhanced performances through the identification of a limitation of the Rh reduction from the oxides matrix as key point to increase the Rh performances. The Rh loading have been studied to allow the catalyst scale up for pilot process in Chieti in a shape of Rh-HT on honeycomb ceramic material. The developed catalyst has enhanced methane conversion in a inch diameter monolith reactor if compared with the semi-industrial catalyst chosen in the project as the best reference.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This work presents a comprehensive methodology for the reduction of analytical or numerical stochastic models characterized by uncertain input parameters or boundary conditions. The technique, based on the Polynomial Chaos Expansion (PCE) theory, represents a versatile solution to solve direct or inverse problems related to propagation of uncertainty. The potentiality of the methodology is assessed investigating different applicative contexts related to groundwater flow and transport scenarios, such as global sensitivity analysis, risk analysis and model calibration. This is achieved by implementing a numerical code, developed in the MATLAB environment, presented here in its main features and tested with literature examples. The procedure has been conceived under flexibility and efficiency criteria in order to ensure its adaptability to different fields of engineering; it has been applied to different case studies related to flow and transport in porous media. Each application is associated with innovative elements such as (i) new analytical formulations describing motion and displacement of non-Newtonian fluids in porous media, (ii) application of global sensitivity analysis to a high-complexity numerical model inspired by a real case of risk of radionuclide migration in the subsurface environment, and (iii) development of a novel sensitivity-based strategy for parameter calibration and experiment design in laboratory scale tracer transport.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Lo studio presentato in questa sede concerne applicazioni di saldatura LASER caratterizzate da aspetti di non-convenzionalità ed è costituito da tre filoni principali. Nel primo ambito di intervento è stata valutata la possibilità di effettuare saldature per fusione, con LASER ad emissione continua, su pannelli Aluminum Foam Sandwich e su tubi riempiti in schiuma di alluminio. Lo studio ha messo in evidenza numerose linee operative riguardanti le problematiche relative alla saldatura delle pelli esterne dei componenti ed ha dimostrato la fattibilità relativa ad un approccio di giunzione LASER integrato (saldatura seguita da un post trattamento termico) per la realizzazione della giunzione completa di particolari tubolari riempiti in schiuma con ripristino della struttura cellulare all’interfaccia di giunzione. Il secondo ambito di intervento è caratterizzato dall’applicazione di una sorgente LASER di bassissima potenza, operante in regime ad impulsi corti, nella saldatura di acciaio ad elevato contenuto di carbonio. Lo studio ha messo in evidenza come questo tipo di sorgente, solitamente applicata per lavorazioni di ablazione e marcatura, possa essere applicata anche alla saldatura di spessori sub-millimetrici. In questa fase è stato messo in evidenza il ruolo dei parametri di lavoro sulla conformazione del giunto ed è stata definita l’area di fattibilità del processo. Lo studio è stato completato investigando la possibilità di applicare un trattamento LASER dopo saldatura per addolcire le eventuali zone indurite. In merito all’ultimo ambito di intervento l’attività di studio si è focalizzata sull’utilizzo di sorgenti ad elevata densità di potenza (60 MW/cm^2) nella saldatura a profonda penetrazione di acciai da costruzione. L’attività sperimentale e di analisi dei risultati è stata condotta mediante tecniche di Design of Experiment per la valutazione del ruolo preciso di tutti i parametri di processo e numerose considerazioni relative alla formazione di cricche a caldo sono state suggerite.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The present study is focused on the development of new VIII group metal on CeO2 – ZrO2 (CZO) catalyst to be used in reforming reaction for syngas production. The catalyst are tested in the oxyreforming process, extensively studied by Barbera [44] in a new multistep process configuration, with intermediate H2 membrane separation, that can be carried out at lower temperature (750°C) with respect the reforming processes (900 – 1000°C). In spite of the milder temperatures, the oxy-reforming conditions (S/C = 0.7; O2/C = 0.21) remain critical regarding the deactivation problems mainly deriving from thermal sintering and carbon formation phenomena. The combination of the high thermal stability characterizing the ZrO2, with the CeO2 redox properties, allows the formation of stable mixed oxide system with high oxygen mobility. This feature can be exploited in order to contrast the carbon deposition on the active metal surface through the oxidation of the carbon by means of the mobile oxygen atoms available at the surface of the CZO support. Ce0.5Zr0.5O2 is the phase claimed to have the highest oxygen mobility but its formation is difficult through classical synthesis (co-precipitation), hence a water-in-oil microemulsion method is, widely studied and characterized. Two methods (IWI and bulk) for the insertion of the active metal (Rh, Ru, Ni) are followed and their effects, mainly related to the metal stability and dispersion on the support, are discussed, correlating the characterization with the catalytic activity. Different parameters (calcination and reduction temperatures) are tuned to obtain the best catalytic system both in terms of activity and stability. Interesting results are obtained with impregnated and bulk catalysts, the latter representing a new class of catalysts. The best catalysts are also tested in a low temperature (350 – 500°C) steam reforming process and preliminary tests with H2 membrane separation have been also carried out.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The study defines a new farm classification and identifies the arable land management. These aspects and several indicators are taken into account to estimate the sustainability level of farms, for organic and conventional regimes. The data source is Italian Farm Account Data Network (RICA) for years 2007-2011, which samples structural and economical information. An environmental data has been added to the previous one to better describe the farm context. The new farm classification describes holding by general informations and farm structure. The general information are: adopted regime and farm location in terms of administrative region, slope and phyto-climatic zone. The farm structures describe the presence of main productive processes and land covers, which are recorded by FADN database. The farms, grouped by homogeneous farm structure or farm typology, are evaluated in terms of sustainability. The farm model MAD has been used to estimate a list of indicators. They describe especially environmental and economical areas of sustainability. Finally arable lands are taken into account to identify arable land managements and crop rotations. Each arable land has been classified by crop pattern. Then crop rotation management has been analysed by spatial and temporal approaches. The analysis reports a high variability inside regimes. The farm structure influences indicators level more than regimes, and it is not always possible to compare the two regimes. However some differences between organic and conventional agriculture have been found. Organic farm structures report different frequency and geographical location than conventional ones. Also different connections among arable lands and farm structures have been identified.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

During the PhD program in chemistry, curriculum in environmental chemistry, at the University of Bologna the sustainability of industry was investigated through the application of the LCA methodology. The efforts were focused on the chemical sector in order to investigate reactions dealing with the Green Chemistry and Green Engineering principles, evaluating their sustainability in comparison with traditional pathways by a life cycle perspective. The environmental benefits associated with a reduction in the synthesis steps and the use of renewable feedstock were assessed through a holistic approach selecting two case studies with high relevance from an industrial point of view: the synthesis of acrylonitrile and the production of acrolein. The current approach wants to represent a standardized application of LCA methodology to the chemical sector, which could be extended to several case studies, and also an improvement of the current databases, since the lack of data to fill the inventories of the chemical productions represent a huge limitation, difficult to overcome and that can affects negatively the results of the studies. Results emerged from the analyses confirms that the sustainability in the chemical sector should be evaluated from a cradle-to-gate approach, considering all the stages and flows involved in each pathways in order to avoid shifting the environmental burdens from a steps to another. Moreover, if possible, LCA should be supported by other tools able to investigate the other two dimensions of sustainability represented by the social and economic issues.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The investigation of phylogenetic diversity and functionality of complex microbial communities in relation to changes in the environmental conditions represents a major challenge of microbial ecology research. Nowadays, particular attention is paid to microbial communities occurring at environmental sites contaminated by recalcitrant and toxic organic compounds. Extended research has evidenced that such communities evolve some metabolic abilities leading to the partial degradation or complete mineralization of the contaminants. Determination of such biodegradation potential can be the starting point for the development of cost effective biotechnological processes for the bioremediation of contaminated matrices. This work showed how metagenomics-based microbial ecology investigations supported the choice or the development of three different bioremediation strategies. First, PCR-DGGE and PCR-cloning approaches served the molecular characterization of microbial communities enriched through sequential development stages of an aerobic cometabolic process for the treatment of groundwater contaminated by chlorinated aliphatic hydrocarbons inside an immobilized-biomass packed bed bioreactor (PBR). In this case the analyses revealed homogeneous growth and structure of immobilized communities throughout the PBR and the occurrence of dominant microbial phylotypes of the genera Rhodococcus, Comamonas and Acidovorax, which probably drive the biodegradation process. The same molecular approaches were employed to characterize sludge microbial communities selected and enriched during the treatment of municipal wastewater coupled with the production of polyhydroxyalkanoates (PHA). Known PHA-accumulating microorganisms identified were affiliated with the genera Zooglea, Acidovorax and Hydrogenophaga. Finally, the molecular investigation concerned communities of polycyclic aromatic hydrocarbon (PAH) contaminated soil subjected to rhizoremediation with willow roots or fertilization-based treatments. The metabolic ability to biodegrade naphthalene, as a representative model for PAH, was assessed by means of stable isotope probing in combination with high-throughput sequencing analysis. The phylogenetic diversity of microbial populations able to derive carbon from naphthalene was evaluated as a function of the type of treatment.