21 resultados para HfO2 thin film


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Organic molecular semiconductors are subject of intense research for their crucial role as key components of new generation low cost, flexible, and large area electronic devices such as displays, thin-film transistors, solar cells, sensors and logic circuits. In particular, small molecular thienoimide (TI) based materials are emerging as novel multifunctional materials combining a good processability together to ambipolar or n-type charge transport and electroluminescence at the solid state, thus enabling the fabrication of integrated devices like organic field effect transistors (OFETs) and light emitting transistor (OLETs). Given this peculiar combination of characteristics, they also constitute the ideal substrates for fundamental studies on the structure-property relationships in multifunctional molecular systems. In this scenario, this thesis work is focused on the synthesis of new thienoimide based materials with tunable optical, packing, morphology, charge transport and electroluminescence properties by following a fine molecular tailoring, thus optimizing their performances in device as well as investigating and enabling new applications. Investigation on their structure-property relationships has been carried out and in particular, the effect of different π-conjugated cores (heterocycles, length) and alkyl end chain (shape, length) changes have been studied, obtaining materials with enhanced electron transport capability end electroluminescence suitable for the realization of OFETs and single layer OLETs. Moreover, control on the polymorphic behaviour characterizing thienoimide materials has been reached by synthetic and post-synthetic methodologies, developing multifunctional materials from a single polymorphic compound. Finally, with the aim of synthesizing highly pure materials, simplifying the purification steps and avoiding organometallic residues, procedures based on direct arylation reactions replacing conventional cross-couplings have been investigated and applied to different classes of molecules, bearing thienoimidic core or ends, as well as thiophene and anthracene derivatives, validating this approach as a clean alternative for the synthesis of several molecular materials.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

There is a remarkable level of interest in the development of π-conjugated polymers (ICPs) which have been employed, thanks to their promising optical and electronic properties, in numerous applications including photovoltaic cells, light emitting diodes and thin-film transistors. Although high power conversion efficiency can be reached using poly(3-alkylthiophenes) (P3ATs) as electron-donating materials in polymeric solar cells of the Bulk-Heterojunction type (BHJ), their relatively large band gap limits the solar spectrum fraction that can be utilized. The research work described in this dissertation thus concerns the synthesis, characterization and study of the optical and photoactivity properties of new organic semiconducting materials based on polythiophenes. In detail, various narrow band gap polymers and copolymers were developed through different approaches and were characterized by several complementary techniques, such as gel permeation chromatography (GPC), NMR spectroscopy, thermal analyses (DSC, TGA), UV-Vis/PL spectroscopy and cyclic voltammetry (CV), in order to investigate their structural and chemical/photophysical properties. Moreover, the polymeric derivatives were tested as active material in air-processed organic solar cells. The activity has also been devoted to investigate the behavior of polythiophenes with chiral side chain, that are fascinating materials capable to assume helix supramolecular structures, exhibiting optical activity in the aggregated state.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The study of polymorphism has an important role in several fields of materials science, because structural differences lead to different physico-chemical properties of the system. This PhD work was dedicated to the investigation of polymorphism in Indigo, Thioindigo and Quinacridone, as case studies among the organic pigments employed as semiconductors, and in Paracetamol, Phenytoin and Nabumetone, chosen among some commonly used API. The aim of the research was to improve the understanding on the structures of bulk crystals and thin films, adopting Raman spectroscopy as the method of choice, while resorting to other experimental techniques to complement the gathered information. Different crystalline polymorphs, in fact, may be conveniently distinguished by their Raman spectra in the region of the lattice phonons (10-150 cm-1), the frequencies of which, probing the inter-molecular interactions, are very sensitive to even slight modifications in the molecular packing. In particular, we have used Confocal Raman Microscopy, which is a powerful, yet simple, technique for the investigation of crystal polymorphism in organic and inorganic materials, being capable of monitoring physical modifications, chemical transformations and phase inhomogeneities in crystal domains at the micrometre scale. In this way, we have investigated bulk crystals and thin film samples obtained with a variety of crystal growth and deposition techniques. Pure polymorphs and samples with phase mixing were found and fully characterized. Raman spectroscopy was complemented mainly by XRD measurements for bulk crystals and by AFM, GIXD and TEM for thin films. Structures and phonons of the investigated polymorphs were computed by DFT methods, and the comparison between theoretical and experimental results was used to assess the relative stability of the polymorphs and to assist the spectroscopic investigation. The Raman measurements were thus found to be able to clarify ambiguities in the phase assignments which otherwise the other methods were unable to solve.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In the field of bone substitutes is highly researched an innovative material able to fill gaps with high mechanical performances and able to stimulate cell response, permitting the complete restoration of the bone portion. In this respect, the synthesis of new bioactive materials able to mimic the compositional, morphological and mechanical features of bone is considered as the elective approach for effective tissue regeneration. Hydroxyapatite (HA) is the main component of the inorganic part of bone. Additionally ionic substitution can be performed in the apatite lattice producing different effects, depending from the selected ions. Magnesium, in substitution of calcium, and carbonate, in substitution of phosphate, extensively present in the biological bones, are able to improve properties naturally present in the apatitic phase, (i.e. biomimicry, solubility e osteoinductive properties). Other ions can be used to give new useful properties, like antiresorptive or antimicrobial properties, to the apatitic phase. This thesis focused on the development of hydroxyapatite nanophases with multiple ionic substitutions including gallium, or zinc ions, in association with magnesium and carbonate, with the purpose to provide double synergistic functionality as osteogenic and antibacterial biomaterial. Were developed bioactive materials based on Sr-substituted hydroxyapatite in the form of sintered targets. The obtained targets were treated with Pulsed Plasma Deposition (PED) resulting in the deposition of thin film coatings able to improve the roughness and wettability of PEEK, enhancing its osteointegrability. Were investigated heterogeneous gas-solid reactions, addressed to the biomorphic transformations of natural 3D porous structures into bone scaffolds with biomimetic composition and hierarchical organization, for application in load-bearing sites. The kinetics of the different reactions of the process were optimized to achieve complete and controlled phase transformation, maintaining the original 3-D morphology. Massive porous scaffolds made of ion-substituted hydroxyapatite and bone-mimicking structure were developed and tested in 3-D cell culture models.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The thesis investigates the potential of photoactive organic semiconductors as a new class of materials for developing bioelectronic devices that can convert light into biological signals. The materials can be either small molecules or polymers. When these materials interact with aqueous biological fluids, they give rise to various electrochemical phenomena, including photofaradaic or photocapacitive processes, depending on whether photogenerated charges participate in redox processes or accumulate at an interface. The thesis starts by studying the behavior of the H2Pc/PTCDI molecular p/n thin-film heterojunction in contact with aqueous electrolyte. An equivalent circuit model is developed, explaining the measurements and predicting behavior in wireless mode. A systematic study on p-type polymeric thin-films is presented, comparing rr-P3HT with two low bandgap conjugated polymers: PBDB-T and PTB7. The results demonstrate that PTB7 has superior photocurrent performance due to more effective electron-transfer onto acceptor states in solution. Furthermore, the thesis addresses the issue of photovoltage generation for wireless photoelectrodes. An analytical model based on photoactivated charge-transfer across the organic-semiconductor/water interface is developed, explaining the large photovoltages observed for polymeric p-type semiconductor electrodes in water. Then, flash-precipitated nanoparticles made of the same three photoactive polymers are investigated, assessing the influence of fabrication parameters on the stability, structure, and energetics of the nanoparticles. Photocathodic current generation and consequent positive charge accumulation is also investigated. Additionally, newly developed porous P3HT thin-films are tested, showing that porosity increases both the photocurrent and the semiconductor/water interfacial capacity. Finally, the thesis demonstrates the biocompatibility of the materials in in-vitro experiments and shows safe levels of photoinduced intracellular ROS production with p-type polymeric thin-films and nanoparticles. The findings highlight the potential of photoactive organic semiconductors in the development of optobioelectronic devices, demonstrating their ability to convert light into biological signals and interface with biological fluids.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The study of the spectroscopic phenomena in organic solids, in combination with other techniques, is an effective tool for the understanding of the structural properties of materials based on these compounds. This Ph.D. work was dedicated to the spectroscopic investigation of some relevant processes occurring in organic molecular crystals, with the goal of expanding the knowledge on the relationship between structure, dynamics and photoreactivity of these systems. Vibrational spectroscopy has been the technique of choice, always in combination with X-ray diffraction structural studies and often the support of computational methods. The vibrational study of the molecular solid state reaches its full potential when it includes the low-wavenumber region of the lattice-phonon modes, which probe the weak intermolecular interactions and are the fingerprints of the lattice itself. Microscopy is an invaluable addition in the investigation of processes that take place in the micro-meter scale of the crystal micro-domains. In chemical and phase transitions, as well as in polymorph screening and identification, the combination of Raman microscopy and lattice-phonon detection has provided useful information. Research on the fascinating class of single-crystal-to-single-crystal photoreactions, has shown how the homogeneous mechanism of these transformations can be identified by lattice-phonon microscopy, in agreement with the continuous evolution of their XRD patterns. On describing the behavior of the photodimerization mechanism of vitamin K3, the focus was instead on the influence of its polymorphism in governing the product isomerism. Polymorphism is the additional degree of freedom of molecular functional materials, and by advancing in its control and properties, functionalities can be promoted for useful applications. Its investigation focused on thin-film phases, widely employed in organic electronics. The ambiguities in phase identification often emerging by other experimental methods were successfully solved by vibrational measurements.