20 resultados para GALAXIES: STATISTICS


Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this Thesis, we study the physical properties and the cosmic evolution of AGN and their host galaxies since z∼3. Our analysis exploits samples of star forming galaxies detected with Herschel at far-IR wavelengths (from 70 up to 500 micron) in different extragalactic surveys, such as COSMOS and the deep GOODS (South and North) fields. The broad-band ancillary data available in COSMOS and the GOODS fields, allows us to implement Herschel and Spitzer photometry with multi-wavelength ancillary data. We perform a multicomponent SED-fitting decomposition to decouple the emission due to star formation from that due to AGN accretion, and to estimate both host-galaxy parameters (such as stellar mass, M* and star formation rate, SFR), and nuclear intrinsic bolometric luminosities. We use the individual estimates of AGN bolometric luminosity obtained through SED-fitting decomposition to reconstruct the redshit evolution of the AGN bolometric luminosity function since z∼3. The resulting trends are used to estimate the overall AGN accretion rate density at different cosmic epochs and to trace the first ever estimate of the AGN accretion history from an IR survey. Later on, we focus our study on the connection between AGN accretion and integrated galaxy properties. We analyse the relationships of AGN accretion with galaxy properties in the SFR-M* plane and at different cosmic epochs. Finally, we infer what is the parameter that best correlates with AGN accretion, comparing our results with previous studies and discussing their physical implications in the context of current scenarios of AGN/galaxy evolution.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The way mass is distributed in galaxies plays a major role in shaping their evolution across cosmic time. The galaxy's total mass is usually determined by tracing the motion of stars in its potential, which can be probed observationally by measuring stellar spectra at different distances from the galactic centre, whose kinematics is used to constrain dynamical models. A class of such models, commonly used to accurately determine the distribution of luminous and dark matter in galaxies, is that of equilibrium models. In this Thesis, a novel approach to the design of equilibrium dynamical models, in which the distribution function is an analytic function of the action integrals, is presented. Axisymmetric and rotating models are used to explain observations of a sample of nearby early-type galaxies in the Calar Alto Legacy Integral Field Area survey. Photometric and spectroscopic data for round and flattened galaxies are well fitted by the models, which are then used to get the galaxies' total mass distribution and orbital anisotropy. The time evolution of massive early-type galaxies is also investigated with numerical models. Their structural properties (mass, size, velocity dispersion) are observed to evolve, on average, with redshift. In particular, they appear to be significantly more compact at higher redshift, at fixed stellar mass, so it is interesting to investigate what drives such evolution. This Thesis focuses on the role played by dark-matter haloes: their mass-size and mass-velocity dispersion correlations evolve similarly to the analogous correlations of ellipticals; at fixed halo mass, the haloes are more compact at higher redshift, similarly to massive galaxies; a simple model, in which all the galaxy's size and velocity-dispersion evolution is due to the cosmological evolution of the underlying halo population, reproduces the observed size and velocity-dispersion of massive compact early-type galaxies up to redshift of about 2.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The kinematics is a fundamental tool to infer the dynamical structure of galaxies and to understand their formation and evolution. Spectroscopic observations of gas emission lines are often used to derive rotation curves and velocity dispersions. It is however difficult to disentangle these two quantities in low spatial-resolution data because of beam smearing. In this thesis, we present 3D-Barolo, a new software to derive the gas kinematics of disk galaxies from emission-line data-cubes. The code builds tilted-ring models in the 3D observational space and compares them with the actual data-cubes. 3D-Barolo works with data at a wide range of spatial resolutions without being affected by instrumental biases. We use 3D-Barolo to derive rotation curves and velocity dispersions of several galaxies in both the local and the high-redshift Universe. We run our code on HI observations of nearby galaxies and we compare our results with 2D traditional approaches. We show that a 3D approach to the derivation of the gas kinematics has to be preferred to a 2D approach whenever a galaxy is resolved with less than about 20 elements across the disk. We moreover analyze a sample of galaxies at z~1, observed in the H-alpha line with the KMOS/VLT spectrograph. Our 3D modeling reveals that the kinematics of these high-z systems is comparable to that of local disk galaxies, with steeply-rising rotation curves followed by a flat part and H-alpha velocity dispersions of 15-40 km/s over the whole disks. This evidence suggests that disk galaxies were already fully settled about 7-8 billion years ago. In summary, 3D-Barolo is a powerful and robust tool to separate physical and instrumental effects and to derive a reliable kinematics. The analysis of large samples of galaxies at different redshifts with 3D-Barolo will provide new insights on how galaxies assemble and evolve throughout cosmic time.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this Thesis, we study the accretion of mass and angular momentum onto the disc of spiral galaxies from a global and a local perspective and comparing theory predictions with several observational data. First, we propose a method to measure the specific mass and radial growth rates of stellar discs, based on their star formation rate density profiles and we apply it to a sample of nearby spiral galaxies. We find a positive radial growth rate for almost all galaxies in our sample. Our galaxies grow in size, on average, at one third of the rate at which they grow in mass. Our results are in agreement with theoretical expectations if known scaling relations of disc galaxies are not evolving with time. We also propose a novel method to reconstruct accretion profiles and the local angular momentum of the accreting material from the observed structural and chemical properties of spiral galaxies. Applied to the Milky Way and to one external galaxy, our analysis indicates that accretion occurs at relatively large radii and has a local deficit of angular momentum with respect to the disc. Finally, we show how structure and kinematics of hot gaseous coronae, which are believed to be the source of mass and angular momentum of massive spiral galaxies, can be reconstructed from their angular momentum and entropy distributions. We find that isothermal models with cosmologically motivated angular momentum distributions are compatible with several independent observational constraints. We also consider more complex baroclinic equilibria: we describe a new parametrization for these states, a new self-similar family of solution and a method for reconstructing structure and kinematics from the joint angular momentum/entropy distribution.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The study of supermassive black hole (SMBH) accretion during their phase of activity (hence becoming active galactic nuclei, AGN), and its relation to the host-galaxy growth, requires large datasets of AGN, including a significant fraction of obscured sources. X-ray data are strategic in AGN selection, because at X-ray energies the contamination from non-active galaxies is far less significant than in optical/infrared surveys, and the selection of obscured AGN, including also a fraction of heavily obscured AGN, is much more effective. In this thesis, I present the results of the Chandra COSMOS Legacy survey, a 4.6 Ms X-ray survey covering the equatorial COSMOS area. The COSMOS Legacy depth (flux limit f=2x10^(-16) erg/s/cm^(-2) in the 0.5-2 keV band) is significantly better than that of other X-ray surveys on similar area, and represents the path for surveys with future facilities, like Athena and X-ray Surveyor. The final Chandra COSMOS Legacy catalog contains 4016 point-like sources, 97% of which with redshift. 65% of the sources are optically obscured and potentially caught in the phase of main BH growth. We used the sample of 174 Chandra COSMOS Legacy at z>3 to place constraints on the BH formation scenario. We found a significant disagreement between our space density and the predictions of a physical model of AGN activation through major-merger. This suggests that in our luminosity range the BH triggering through secular accretion is likely preferred to a major-merger triggering scenario. Thanks to its large statistics, the Chandra COSMOS Legacy dataset, combined with the other multiwavelength COSMOS catalogs, will be used to answer questions related to a large number of astrophysical topics, with particular focus on the SMBH accretion in different luminosity and redshift regimes.