19 resultados para GALAXIES: EVOLUTION
Resumo:
The kinematics is a fundamental tool to infer the dynamical structure of galaxies and to understand their formation and evolution. Spectroscopic observations of gas emission lines are often used to derive rotation curves and velocity dispersions. It is however difficult to disentangle these two quantities in low spatial-resolution data because of beam smearing. In this thesis, we present 3D-Barolo, a new software to derive the gas kinematics of disk galaxies from emission-line data-cubes. The code builds tilted-ring models in the 3D observational space and compares them with the actual data-cubes. 3D-Barolo works with data at a wide range of spatial resolutions without being affected by instrumental biases. We use 3D-Barolo to derive rotation curves and velocity dispersions of several galaxies in both the local and the high-redshift Universe. We run our code on HI observations of nearby galaxies and we compare our results with 2D traditional approaches. We show that a 3D approach to the derivation of the gas kinematics has to be preferred to a 2D approach whenever a galaxy is resolved with less than about 20 elements across the disk. We moreover analyze a sample of galaxies at z~1, observed in the H-alpha line with the KMOS/VLT spectrograph. Our 3D modeling reveals that the kinematics of these high-z systems is comparable to that of local disk galaxies, with steeply-rising rotation curves followed by a flat part and H-alpha velocity dispersions of 15-40 km/s over the whole disks. This evidence suggests that disk galaxies were already fully settled about 7-8 billion years ago. In summary, 3D-Barolo is a powerful and robust tool to separate physical and instrumental effects and to derive a reliable kinematics. The analysis of large samples of galaxies at different redshifts with 3D-Barolo will provide new insights on how galaxies assemble and evolve throughout cosmic time.
Resumo:
Dynamical models of stellar systems represent a powerful tool to study their internal structure and dynamics, to interpret the observed morphological and kinematical fields, and also to support numerical simulations of their evolution. We present a method especially designed to build axisymmetric Jeans models of galaxies, assumed as stationary and collisionless stellar systems. The aim is the development of a rigorous and flexible modelling procedure of multicomponent galaxies, composed of different stellar and dark matter distributions, and a central supermassive black hole. The stellar components, in particular, are intended to represent different galaxy structures, such as discs, bulges, halos, and can then have different structural (density profile, flattening, mass, scale-length), dynamical (rotation, velocity dispersion anisotropy), and population (age, metallicity, initial mass function, mass-to-light ratio) properties. The theoretical framework supporting the modelling procedure is presented, with the introduction of a suitable nomenclature, and its numerical implementation is discussed, with particular reference to the numerical code JASMINE2, developed for this purpose. We propose an approach for efficiently scaling the contributions in mass, luminosity, and rotational support, of the different matter components, allowing for fast and flexible explorations of the model parameter space. We also offer different methods of the computation of the gravitational potentials associated of the density components, especially convenient for their easier numerical tractability. A few galaxy models are studied, showing internal, and projected, structural and dynamical properties of multicomponent galaxies, with a focus on axisymmetric early-type galaxies with complex kinematical morphologies. The application of galaxy models to the study of initial conditions for hydro-dynamical and $N$-body simulations of galaxy evolution is also addressed, allowing in particular to investigate the large number of interesting combinations of the parameters which determine the structure and dynamics of complex multicomponent stellar systems.
Resumo:
Understanding how Active Galactic Nuclei (AGN) shape galaxy evolution is a key challenge of modern astronomy. In the framework where black hole (BH) and galaxy growth are linked, AGN feedback must be tackled both at its “causes” (e.g. AGN-driven winds) and its “effects” (alteration of the gas reservoir in AGN hosts). The most informative cosmic time is z~1-3, at the peak of AGN activity and galaxy buildup, the so-called cosmic noon. The aim of this thesis is to provide new insights regarding some key questions that still remain open in this research field: i) What are the properties of AGN-driven sub-pc scale winds at z>1? ii) Are AGN-driven winds effective in influencing the life of galaxies? iii) Do AGN impact directly on star formation (SF) and gas content of their hosts? I first address AGN feedback as “caught in the act” by studying ultra-fast outflows (UFOs), X-ray AGN-driven winds, in gravitationally lensed quasars. I build the first statistically robust sample of high-z AGN, not preselected based on AGN-driven winds. I derive a first estimate of the high-z UFO detection fraction and measure the UFO duty cycle of a single high-z quasar for the first time. I also address the “effects” of AGN feedback on the life of host galaxies. If AGN influence galaxy growth, then they will reasonably impact the molecular gas reservoir first, and SF as a consequence. Through a comparative study of the molecular gas content in cosmic-noon AGN hosts and matched non-active galaxies (i.e., galaxies not hosting an AGN), we find that the host galaxies of more regular AGN (not selected to be the most luminous) are generally similar to non-active galaxies. However, we report on the possibility of a luminosity effect regulating the efficiency by which AGN might impact on galaxy growth.
Resumo:
Radio galaxies (RGs) are extremely relevant in addressing important unknowns concerning the interaction among black hole accretion, radio jets, and the environment. In the classical scheme, their accretion rate and ejection of relativistic jets are directly linked: efficient accretion (HERG) is associated with powerful edge-brightened jets (FRIIs); inefficient accretion (LERG) is associated with weak edge-darkened jets (FRIs). The observation of RGs with an inefficient engine associated with edge-brightened radio emission (FRII-LERGs) broke this scheme. FRII-LERGs constitute a suitable population to explore how accretion and ejection are linked and evaluate the environment's role in shaping jets. To this aim, we performed a multiwavelength study of different RGs catalogs spanning from Jy to mJy flux densities. At first, we investigated the X-ray properties of a sample of 51 FRIIs belonging to the 3CR catalog at z<0.3. Two hypotheses were invoked to explain FRII-LERGs behavior: evolution from classical FRIIs; the role of the environment. Next, we explored the mJy sky by studying the optical-radio properties of hundreds of RGs at z<0.15 (Best & Heckman 2012 sample). FRII-LERGs appear more similar to the old FRI-LERGs than to the young FRII-HERGs. These results point towards an evolutive scenario, however, nuclear time scale changes, star population aging, and kpc-Mpc radio structure modification do not agree. The role of the Mpc environment was then investigated. The Wen et al. 2015 galaxy clusters sample, built exploiting the SDSS survey, allowed us to explore the habitat of 7219 RGs at z<0.3. Most RGs are found to live in outside clusters. For these sources, differences among RG classes are still present. Thus, the environment is not the key parameter, and the possibility of intrinsic differences was reconsidered: we speculated that different black hole properties (spin and magnetic field at its horizon) could determine the observed spread in jet luminosity.