22 resultados para Field testing and monitoring,
Resumo:
The ability of integrating into a unified percept sensory inputs deriving from different sensory modalities, but related to the same external event, is called multisensory integration and might represent an efficient mechanism of sensory compensation when a sensory modality is damaged by a cortical lesion. This hypothesis has been discussed in the present dissertation. Experiment 1 explored the role of superior colliculus (SC) in multisensory integration, testing patients with collicular lesions, patients with subcortical lesions not involving the SC and healthy control subjects in a multisensory task. The results revealed that patients with collicular lesions, paralleling the evidence of animal studies, demonstrated a loss of multisensory enhancement, in contrast with control subjects, providing the first lesional evidence in humans of the essential role of SC in mediating audio-visual integration. Experiment 2 investigated the role of cortex in mediating multisensory integrative effects, inducing virtual lesions by inhibitory theta-burst stimulation on temporo-parietal cortex, occipital cortex and posterior parietal cortex, demonstrating that only temporo-parietal cortex was causally involved in modulating the integration of audio-visual stimuli at the same spatial location. Given the involvement of the retino-colliculo-extrastriate pathway in mediating audio-visual integration, the functional sparing of this circuit in hemianopic patients is extremely relevant in the perspective of a multisensory-based approach to the recovery of unisensory defects. Experiment 3 demonstrated the spared functional activity of this circuit in a group of hemianopic patients, revealing the presence of implicit recognition of the fearful content of unseen visual stimuli (i.e. affective blindsight), an ability mediated by the retino-colliculo-extrastriate pathway and its connections with amygdala. Finally, Experiment 4 provided evidence that a systematic audio-visual stimulation is effective in inducing long-lasting clinical improvements in patients with visual field defect and revealed that the activity of the spared retino-colliculo-extrastriate pathway is responsible of the observed clinical amelioration, as suggested by the greater improvement observed in patients with cortical lesions limited to the occipital cortex, compared to patients with lesions extending to other cortical areas, found in tasks high demanding in terms of spatial orienting. Overall, the present results indicated that multisensory integration is mediated by the retino-colliculo-extrastriate pathway and that a systematic audio-visual stimulation, activating this spared neural circuit, is able to affect orientation towards the blind field in hemianopic patients and, therefore, might constitute an effective and innovative approach for the rehabilitation of unisensory visual impairments.
Resumo:
Design parameters, process flows, electro-thermal-fluidic simulations and experimental characterizations of Micro-Electro-Mechanical-Systems (MEMS) suited for gas-chromatographic (GC) applications are presented and thoroughly described in this thesis, whose topic belongs to the research activities the Institute for Microelectronics and Microsystems (IMM)-Bologna is involved since several years, i.e. the development of micro-systems for chemical analysis, based on silicon micro-machining techniques and able to perform analysis of complex gaseous mixtures, especially in the field of environmental monitoring. In this regard, attention has been focused on the development of micro-fabricated devices to be employed in a portable mini-GC system for the analysis of aromatic Volatile Organic Compounds (VOC) like Benzene, Toluene, Ethyl-benzene and Xylene (BTEX), i.e. chemical compounds which can significantly affect environment and human health because of their demonstrated carcinogenicity (benzene) or toxicity (toluene, xylene) even at parts per billion (ppb) concentrations. The most significant results achieved through the laboratory functional characterization of the mini-GC system have been reported, together with in-field analysis results carried out in a station of the Bologna air monitoring network and compared with those provided by a commercial GC system. The development of more advanced prototypes of micro-fabricated devices specifically suited for FAST-GC have been also presented (silicon capillary columns, Ultra-Low-Power (ULP) Metal OXide (MOX) sensor, Thermal Conductivity Detector (TCD)), together with the technological processes for their fabrication. The experimentally demonstrated very high sensitivity of ULP-MOX sensors to VOCs, coupled with the extremely low power consumption, makes the developed ULP-MOX sensor the most performing metal oxide sensor reported up to now in literature, while preliminary test results proved that the developed silicon capillary columns are capable of performances comparable to those of the best fused silica capillary columns. Finally, the development and the validation of a coupled electro-thermal Finite Element Model suited for both steady-state and transient analysis of the micro-devices has been described, and subsequently implemented with a fluidic part to investigate devices behaviour in presence of a gas flowing with certain volumetric flow rates.
Resumo:
Most basaltic volcanoes are affected by recurrent lateral instabilities during their evolution. Numerous factors have been shown to be involved in the process of flank destabilization occurring over long periods of time or by instantaneous failures. However, the role of these factors on the mechanical behaviour and stability of volcanic edifices is poorly-constrained as lateral failure usually results from the combined effects of several parameters. Our study focuses on the morphological and structural comparison of two end-member basaltic systems, La Reunion (Indian ocean, France) and Stromboli (southern Tyrrhenian sea, Italy). We showed that despite major differences on their volumes and geodynamic settings, both systems present some similarities as they are characterized by an intense intrusive activity along well-developed rift zones and recurrent phenomena of flank collapse during their evolution. Among the factors of instability, the examples of la Reunion and Stromboli evidence the major contribution of intrusive complexes to volcano growth and destruction as attested by field observations and the monitoring of these active volcanoes. Classical models consider the relationship between vertical intrusions of magma and flank movements along a preexisting sliding surface. A set of published and new field data from Piton des Neiges volcano (La Reunion) allowed us to recognize the role of subhorizontal intrusions in the process of flank instability and to characterize the geometry of both subvertical and subhorizontal intrusions within basaltic edifices. This study compares the results of numerical modelling of the displacements associated with high-angle and low-angle intrusions within basaltic volcanoes. We use a Mixed Boundary Element Method to investigate the mechanical response of an edifice to the injection of magmatic intrusions in different stress fields. Our results indicate that the anisotropy of the stress field favours the slip along the intrusions due to cointrusive shear stress, generating flank-scale displacements of the edifice, especially in the case of subhorizontal intrusions, capable of triggering large-scale flank collapses on basaltic volcanoes. Applications of our theoretical results to real cases of flank displacements on basaltic volcanoes (such as the 2007 eruptive crisis at La Reunion and Stromboli) revealed that the previous model of subvertical intrusions-related collapse is a likely mechanism affecting small-scale steeply-sloping basaltic volcanoes like Stromboli. Furthermore, our field study combined to modelling results confirms the importance of shallow-dipping intrusions in the morpho-structural evolution of large gently-sloping basaltic volcanoes like Piton de la Fournaise, Etna and Kilauea, with particular regards to flank instability, which can cause catastrophic tsunamis.
Resumo:
This work illustrates a soil-tunnel-structure interaction study performed by an integrated,geotechnical and structural,approach based on 3D finite element analyses and validated against experimental observations.The study aims at analysing the response of reinforced concrete framed buildings on discrete foundations in interaction with metro lines.It refers to the case of the twin tunnels of the Milan (Italy) metro line 5,recently built in coarse grained materials using EPB machines,for which subsidence measurements collected along ground and building sections during tunnelling were available.Settlements measured under freefield conditions are firstly back interpreted using Gaussian empirical predictions. Then,the in situ measurements’ analysis is extended to include the evolving response of a 9 storey reinforced concrete building while being undercrossed by the metro line.In the finite element study,the soil mechanical behaviour is described using an advanced constitutive model. This latter,when combined with a proper simulation of the excavation process, proves to realistically reproduce the subsidence profiles under free field conditions and to capture the interaction phenomena occurring between the twin tunnels during the excavation. Furthermore, when the numerical model is extended to include the building, schematised in a detailed manner, the results are in good agreement with the monitoring data for different stages of the twin tunnelling. Thus, they indirectly confirm the satisfactory performance of the adopted numerical approach which also allows a direct evaluation of the structural response as an outcome of the analysis. Further analyses are also carried out modelling the building with different levels of detail. The results highlight that, in this case, the simplified approach based on the equivalent plate schematisation is inadequate to capture the real tunnelling induced displacement field. The overall behaviour of the system proves to be mainly influenced by the buried portion of the building which plays an essential role in the interaction mechanism, due to its high stiffness.
Resumo:
Nowadays the production of increasingly complex and electrified vehicles requires the implementation of new control and monitoring systems. This reason, together with the tendency of moving rapidly from the test bench to the vehicle, leads to a landscape that requires the development of embedded hardware and software to face the application effectively and efficiently. The development of application-based software on real-time/FPGA hardware could be a good answer for these challenges: FPGA grants parallel low-level and high-speed calculation/timing, while the Real-Time processor can handle high-level calculation layers, logging and communication functions with determinism. Thanks to the software flexibility and small dimensions, these architectures can find a perfect collocation as engine RCP (Rapid Control Prototyping) units and as smart data logger/analyser, both for test bench and on vehicle application. Efforts have been done for building a base architecture with common functionalities capable of easily hosting application-specific control code. Several case studies originating in this scenario will be shown; dedicated solutions for protype applications have been developed exploiting a real-time/FPGA architecture as ECU (Engine Control Unit) and custom RCP functionalities, such as water injection and testing hydraulic brake control.
Resumo:
The growing demand for lightweight solutions in every field of engineering is driving the industry to seek new technological solutions to exploit the full potential of different materials. The combination of dissimilar materials with distinct property ranges embodies a transparent allocation of component functions while allowing an optimal mix of their characteristics. From both technological and design perspectives, the interaction between dissimilar materials can lead to severe defects that compromise a multi-material hybrid component's performance and its structural integrity. This thesis aims to develop methodologies for designing, manufacturing, and monitoring of hybrid metal-composite joints and hybrid composite components. In Chapter 1, a methodology for designing and manufacturing hybrid aluminum/composite co-cured tubes is assessed. In Chapter 2, a full-field methodology for fiber misalignment detection and stiffness prediction for hybrid, long fiber reinforced composite systems is shown and demonstrated. Chapter 3 reports the development of a novel technology for joining short fiber systems and metals in a one-step co-curing process using lattice structures. Chapter 4 is dedicated to a novel analytical framework for the design optimization of two lattice architectures.
Resumo:
In the field of educational and psychological measurement, the shift from paper-based to computerized tests has become a prominent trend in recent years. Computerized tests allow for more complex and personalized test administration procedures, like Computerized Adaptive Testing (CAT). CAT, following the Item Response Theory (IRT) models, dynamically generates tests based on test-taker responses, driven by complex statistical algorithms. Even if CAT structures are complex, they are flexible and convenient, but concerns about test security should be addressed. Frequent item administration can lead to item exposure and cheating, necessitating preventive and diagnostic measures. In this thesis a method called "CHeater identification using Interim Person fit Statistic" (CHIPS) is developed, designed to identify and limit cheaters in real-time during test administration. CHIPS utilizes response times (RTs) to calculate an Interim Person fit Statistic (IPS), allowing for on-the-fly intervention using a more secret item bank. Also, a slight modification is proposed to overcome situations with constant speed, called Modified-CHIPS (M-CHIPS). A simulation study assesses CHIPS, highlighting its effectiveness in identifying and controlling cheaters. However, it reveals limitations when cheaters possess all correct answers. The M-CHIPS overcame this limitation. Furthermore, the method has shown not to be influenced by the cheaters’ ability distribution or the level of correlation between ability and speed of test-takers. Finally, the method has demonstrated flexibility for the choice of significance level and the transition from fixed-length tests to variable-length ones. The thesis discusses potential applications, including the suitability of the method for multiple-choice tests, assumptions about RT distribution and level of item pre-knowledge. Also limitations are discussed to explore future developments such as different RT distributions, unusual honest respondent behaviors, and field testing in real-world scenarios. In summary, CHIPS and M-CHIPS offer real-time cheating detection in CAT, enhancing test security and ability estimation while not penalizing test respondents.