17 resultados para Electrical and electronic engineering
Resumo:
The present Thesis reports on the various research projects to which I have contributed during my PhD period, working with several research groups, and whose results have been communicated in a number of scientific publications. The main focus of my research activity was to learn, test, exploit and extend the recently developed vdW-DFT (van der Waals corrected Density Functional Theory) methods for computing the structural, vibrational and electronic properties of ordered molecular crystals from first principles. A secondary, and more recent, research activity has been the analysis with microelectrostatic methods of Molecular Dynamics (MD) simulations of disordered molecular systems. While only very unreliable methods based on empirical models were practically usable until a few years ago, accurate calculations of the crystal energy are now possible, thanks to very fast modern computers and to the excellent performance of the best vdW-DFT methods. Accurate energies are particularly important for describing organic molecular solids, since they often exhibit several alternative crystal structures (polymorphs), with very different packing arrangements but very small energy differences. Standard DFT methods do not describe the long-range electron correlations which give rise to the vdW interactions. Although weak, these interactions are extremely sensitive to the packing arrangement, and neglecting them used to be a problem. The calculations of reliable crystal structures and vibrational frequencies has been made possible only recently, thanks to development of some good representations of the vdW contribution to the energy (known as “vdW corrections”).
Resumo:
There are many diseases that affect the thyroid gland, and among them are carcinoma. Thyroid cancer is the most common endocrine neoplasm and the second most frequent cancer in the 0-49 age group. This thesis deals with two studies I conducted during my PhD. The first concerns the development of a Deep Learning model to be able to assist the pathologist in screening of thyroid cytology smears. This tool created in collaboration with Prof. Diciotti, affiliated with the DEI-UNIBO "Guglielmo Marconi" Department of Electrical Energy and Information Engineering, has an important clinical implication in that it allows patients to be stratified between those who should undergo surgery and those who should not. The second concerns the application of spatial transcriptomics on well-differentiated thyroid carcinomas to better understand their invasion mechanisms and thus to better comprehend which genes may be involved in the proliferation of these tumors. This project specifically was made possible through a fruitful collaboration with the Gustave Roussy Institute in Paris. Studying thyroid carcinoma deeply is essential to improve patient care, increase survival rates, and enhance the overall understanding of this prevalent cancer. It can lead to more effective prevention, early detection, and treatment strategies that benefit both patients and the healthcare system.