20 resultados para Electric control equipment
Resumo:
A robust and well-distributed backbone charging network is the priority to ensure widespread electrification of road transport, providing a driving experience similar to that of internal combustion engine vehicles. International standards set multiple technical targets for on-board and off-board electric vehicle chargers; output voltage levels, harmonic emissions, and isolation requirements strongly influence the design of power converters. Additionally, smart-grid services such as vehicle-to-grid and vehicle-to-vehicle require the implementation of bi-directional stages that inevitably increase system complexity and component count. To face these design challenges, the present thesis provides a rigorous analysis of four-leg and split-capacitor three-phase four-wire active front-end topologies focusing on the harmonic description under different modulation techniques and conditions. The resulting analytical formulation paves the way for converter performance improvements while maintaining regulatory constraints and technical requirements under control. Specifically, split-capacitor inverter current ripple was characterized as providing closed-form formulations valid for every sub-case ranging from synchronous to interleaved PWM. Outcomes are the base for a novel variable switching PWM technique capable of mediating harmonic content limitation and switching loss reduction. A similar analysis is proposed for four-leg inverters with a broad range of continuous and discontinuous PWM modulations. The general superiority of discontinuous PWM modulation in reducing switching losses and limiting harmonic emission was demonstrated. Developments are realized through a parametric description of the neutral wire inductor. Finally, a novel class of integrated isolated converter topologies is proposed aiming at the neutral wire delivery without employing extra switching components rather than the one already available in typical three-phase inverter and dual-active-bridge back-to-back configurations. The fourth leg was integrated inside the dual-active-bridge input bridge providing relevant component count savings. A novel modified single-phase-shift modulation technique was developed to ensure a seamless transition between working conditions like voltage level and power factor. Several simulations and experiments validate the outcomes.
Resumo:
Nowadays, the spreading of the air pollution crisis enhanced by greenhouse gases emission is leading to the worsening of global warming. Recently, several metropolitan cities introduced Zero-Emissions Zones where the use of the Internal Combustion Engine is forbidden to reduce localized pollutants emissions. This is particularly problematic for Plug-in Hybrid Electric Vehicles, which usually work in depleting mode. In order to address these issues, the present thesis presents a viable solution by exploiting vehicular connectivity to retrieve navigation data of the urban event along a selected route. The battery energy needed, in the form of a minimum State of Charge (SoC), is calculated by a Speed Profile Prediction algorithm and a Backward Vehicle Model. That value is then fed to both a Rule-Based Strategy, developed specifically for this application, and an Adaptive Equivalent Consumption Minimization Strategy (A-ECMS). The effectiveness of this approach has been tested with a Connected Hardware-in-the-Loop (C-HiL) on a driving cycle measured on-road, stimulating the predictions with multiple re-routings. However, even if hybrid electric vehicles have been recognized as a valid solution in response to increasingly tight regulations, the reduced engine load and the repeated engine starts and stops may reduce substantially the temperature of the exhaust after-treatment system (EATS), leading to relevant issues related to pollutant emission control. In this context, electrically heated catalysts (EHCs) represent a promising solution to ensure high pollutant conversion efficiency without affecting engine efficiency and performance. This work aims at studying the advantages provided by the introduction of a predictive EHC control function for a light-duty Diesel plug-in hybrid electric vehicle (PHEV) equipped with a Euro 7-oriented EATS. Based on the knowledge of future driving scenarios provided by vehicular connectivity, engine first start can be predicted and therefore an EATS pre-heating phase can be planned.
Resumo:
The cardiomyocytes are very complex consisting of many interlinked non-linear regulatory mechanisms between electrical excitation and mechanical contraction. Thus given a integrated electromechanically coupled system it becomes hard to understand the individual contributor of cardiac electrics and mechanics under both physiological and pathological conditions. Hence, to identify the causal relationship or to predict the responses in a integrated system the use of computational modeling can be beneficial. Computational modeling is a powerful tool that provides complete control of parameters along with the visibility of all the individual components of the integrated system. The advancement of computational power has made it possible to simulate the models in a short timeframe, providing the possibility of increased predictive power of the integrated system. My doctoral thesis is focused on the development of electromechanically integrated human atrial cardiomyocyte model with proper consideration of feedforward and feedback pathways.
Resumo:
With the aim of heading towards a more sustainable future, there has been a noticeable increase in the installation of Renewable Energy Sources (RES) in power systems in the latest years. Besides the evident environmental benefits, RES pose several technological challenges in terms of scheduling, operation, and control of transmission and distribution power networks. Therefore, it raised the necessity of developing smart grids, relying on suitable distributed measurement infrastructure, for instance, based on Phasor Measurement Units (PMUs). Not only are such devices able to estimate a phasor, but they can also provide time information which is essential for real-time monitoring. This Thesis falls within this context by analyzing the uncertainty requirements of PMUs in distribution and transmission applications. Concerning the latter, the reliability of PMU measurements during severe power system events is examined, whereas for the first, typical configurations of distribution networks are studied for the development of target uncertainties. The second part of the Thesis, instead, is dedicated to the application of PMUs in low-inertia power grids. The replacement of traditional synchronous machines with inertia-less RES is progressively reducing the overall system inertia, resulting in faster and more severe events. In this scenario, PMUs may play a vital role in spite of the fact that no standard requirements nor target uncertainties are yet available. This Thesis deeply investigates PMU-based applications, by proposing a new inertia index relying only on local measurements and evaluating their reliability in low-inertia scenarios. It also develops possible uncertainty intervals based on the electrical instrumentation currently used in power systems and assesses the interoperability with other devices before and after contingency events.
Resumo:
In pursuit of aligning with the European Union's ambitious target of achieving a carbon-neutral economy by 2050, researchers, vehicle manufacturers, and original equipment manufacturers have been at the forefront of exploring cutting-edge technologies for internal combustion engines. The introduction of these technologies has significantly increased the effort required to calibrate the models implemented in the engine control units. Consequently the development of tools that reduce costs and the time required during the experimental phases, has become imperative. Additionally, to comply with ever-stricter limits on 〖"CO" 〗_"2" emissions, it is crucial to develop advanced control systems that enhance traditional engine management systems in order to reduce fuel consumption. Furthermore, the introduction of new homologation cycles, such as the real driving emissions cycle, compels manufacturers to bridge the gap between engine operation in laboratory tests and real-world conditions. Within this context, this thesis showcases the performance and cost benefits achievable through the implementation of an auto-adaptive closed-loop control system, leveraging in-cylinder pressure sensors in a heavy-duty diesel engine designed for mining applications. Additionally, the thesis explores the promising prospect of real-time self-adaptive machine learning models, particularly neural networks, to develop an automatic system, using in-cylinder pressure sensors for the precise calibration of the target combustion phase and optimal spark advance in a spark-ignition engines. To facilitate the application of these combustion process feedback-based algorithms in production applications, the thesis discusses the results obtained from the development of a cost-effective sensor for indirect cylinder pressure measurement. Finally, to ensure the quality control of the proposed affordable sensor, the thesis provides a comprehensive account of the design and validation process for a piezoelectric washer test system.