19 resultados para Dipl.-Wi.-Ing. Guido Gravenkötter


Relevância:

20.00% 20.00%

Publicador:

Resumo:

A possible future scenario for the water injection (WI) application has been explored as an advanced strategy for modern GDI engines. The aim is to verify whether the PWI (Port Water Injection) and DWI (Direct Water Injection) architectures can replace current fuel enrichment strategies to limit turbine inlet temperatures (TiT) and knock engine attitude. In this way, it might be possible to extend the stoichiometric mixture condition over the entire engine map, meeting possible future restrictions in the use of AES (Auxiliary Emission Strategies) and future emission limitations. The research was first addressed through a comprehensive assessment of the state-of-the-art of the technology and the main effects of the chemical-physical water properties. Then, detailed chemical kinetics simulations were performed in order to compute the effects of WI on combustion development and auto-ignition. The latter represents an important methodology step for accurate numerical combustion simulations. The water injection was then analysed in detail for a PWI system, through an experimental campaign for macroscopic and microscopic injector characterization inside a test chamber. The collected data were used to perform a numerical validation of the spray models, obtaining an excellent matching in terms of particle size and droplet velocity distributions. Finally, a wide range of three-dimensional CFD simulations of a virtual high-bmep engine were realized and compared, exploring also different engine designs and water/fuel injection strategies under non-reacting and reacting flow conditions. According to the latter, it was found that thanks to the introduction of water, for both PWI and DWI systems, it could be possible to obtain an increase of the target performance and an optimization of the bsfc (Break Specific Fuel Consumption), lowering the engine knock risk at the same time, while the TiT target has been achieved hardly only for one DWI configuration.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This work resumes a wide variety of research activities carried out with the main objective of increasing the efficiency and reducing the fuel consumption of Gasoline Direct Injection engines, especially under high loads. For this purpose, two main innovative technologies have been studied, Water Injection and Low-Pressure Exhaust Gas Recirculation, which help to reduce the temperature of the gases inside the combustion chamber and thus mitigate knock, being this one of the main limiting factors for the efficiency of modern downsized engines that operate at high specific power. A prototypal Port Water Injection system was developed and extensive experimental work has been carried out, initially to identify the benefits and limitations of this technology. This led to the subsequent development and testing of a combustion controller, which has been implemented on a Rapid Control Prototyping environment, capable of managing water injection to achieve knock mitigation and a more efficient combustion phase. Regarding Low-Pressure Exhaust Gas Recirculation, a commercial engine that was already equipped with this technology was used to carry out experimental work in a similar fashion to that of water injection. Another prototypal water injection system has been mounted to this second engine, to be able to test both technologies, at first separately to compare them on equal conditions, and secondly together in the search of a possible synergy. Additionally, based on experimental data from several engines that have been tested during this study, including both GDI and GCI engines, a real-time model (or virtual sensor) for the estimation of the maximum in-cylinder pressure has been developed and validated. This parameter is of vital importance to determine the speed at which damage occurs on the engine components, and therefore to extract the maximum performance without inducing permanent damages.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Several decision and control tasks involve networks of cyber-physical systems that need to be coordinated and controlled according to a fully-distributed paradigm involving only local communications without any central unit. This thesis focuses on distributed optimization and games over networks from a system theoretical perspective. In the addressed frameworks, we consider agents communicating only with neighbors and running distributed algorithms with optimization-oriented goals. The distinctive feature of this thesis is to interpret these algorithms as dynamical systems and, thus, to resort to powerful system theoretical tools for both their analysis and design. We first address the so-called consensus optimization setup. In this context, we provide an original system theoretical analysis of the well-known Gradient Tracking algorithm in the general case of nonconvex objective functions. Then, inspired by this method, we provide and study a series of extensions to improve the performance and to deal with more challenging settings like, e.g., the derivative-free framework or the online one. Subsequently, we tackle the recently emerged framework named distributed aggregative optimization. For this setup, we develop and analyze novel schemes to handle (i) online instances of the problem, (ii) ``personalized'' optimization frameworks, and (iii) feedback optimization settings. Finally, we adopt a system theoretical approach to address aggregative games over networks both in the presence or absence of linear coupling constraints among the decision variables of the players. In this context, we design and inspect novel fully-distributed algorithms, based on tracking mechanisms, that outperform state-of-the-art methods in finding the Nash equilibrium of the game.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The fourth industrial revolution is paving the way for Industrial Internet of Things applications where industrial assets (e.g., robotic arms, valves, pistons) are equipped with a large number of wireless devices (i.e., microcontroller boards that embed sensors and actuators) to enable a plethora of new applications, such as analytics, diagnostics, monitoring, as well as supervisory, and safety control use-cases. Nevertheless, current wireless technologies, such as Wi-Fi, Bluetooth, and even private 5G networks, cannot fulfill all the requirements set up by the Industry 4.0 paradigm, thus opening up new 6G-oriented research trends, such as the use of THz frequencies. In light of the above, this thesis provides (i) a broad overview of the main use-cases, requirements, and key enabling wireless technologies foreseen by the fourth industrial revolution, and (ii) proposes innovative contributions, both theoretical and empirical, to enhance the performance of current and future wireless technologies at different levels of the protocol stack. In particular, at the physical layer, signal processing techniques are being exploited to analyze two multiplexing schemes, namely Affine Frequency Division Multiplexing and Orthogonal Chirp Division Multiplexing, which seem promising for high-frequency wireless communications. At the medium access layer, three protocols for intra-machine communications are proposed, where one is based on LoRa at 2.4 GHz and the others work in the THz band. Different scheduling algorithms for private industrial 5G networks are compared, and two main proposals are described, i.e., a decentralized scheme that leverages machine learning techniques to better address aperiodic traffic patterns, and a centralized contention-based design that serves a federated learning industrial application. Results are provided in terms of numerical evaluations, simulation results, and real-world experiments. Several improvements over the state-of-the-art were obtained, and the description of up-and-running testbeds demonstrates the feasibility of some of the theoretical concepts when considering a real industry plant.