35 resultados para Data-driven knowledge acquisition
Resumo:
Falls are common and burdensome accidents among the elderly. About one third of the population aged 65 years or more experience at least one fall each year. Fall risk assessment is believed to be beneficial for fall prevention. This thesis is about prognostic tools for falls for community-dwelling older adults. We provide an overview of the state of the art. We then take different approaches: we propose a theoretical probabilistic model to investigate some properties of prognostic tools for falls; we present a tool whose parameters were derived from data of the literature; we train and test a data-driven prognostic tool. Finally, we present some preliminary results on prediction of falls through features extracted from wearable inertial sensors. Heterogeneity in validation results are expected from theoretical considerations and are observed from empirical data. Differences in studies design hinder comparability and collaborative research. According to the multifactorial etiology of falls, assessment on multiple risk factors is needed in order to achieve good predictive accuracy.
Resumo:
A critical point in the analysis of ground displacements time series is the development of data driven methods that allow the different sources that generate the observed displacements to be discerned and characterised. A widely used multivariate statistical technique is the Principal Component Analysis (PCA), which allows reducing the dimensionality of the data space maintaining most of the variance of the dataset explained. Anyway, PCA does not perform well in finding the solution to the so-called Blind Source Separation (BSS) problem, i.e. in recovering and separating the original sources that generated the observed data. This is mainly due to the assumptions on which PCA relies: it looks for a new Euclidean space where the projected data are uncorrelated. The Independent Component Analysis (ICA) is a popular technique adopted to approach this problem. However, the independence condition is not easy to impose, and it is often necessary to introduce some approximations. To work around this problem, I use a variational bayesian ICA (vbICA) method, which models the probability density function (pdf) of each source signal using a mix of Gaussian distributions. This technique allows for more flexibility in the description of the pdf of the sources, giving a more reliable estimate of them. Here I present the application of the vbICA technique to GPS position time series. First, I use vbICA on synthetic data that simulate a seismic cycle (interseismic + coseismic + postseismic + seasonal + noise) and a volcanic source, and I study the ability of the algorithm to recover the original (known) sources of deformation. Secondly, I apply vbICA to different tectonically active scenarios, such as the 2009 L'Aquila (central Italy) earthquake, the 2012 Emilia (northern Italy) seismic sequence, and the 2006 Guerrero (Mexico) Slow Slip Event (SSE).
Resumo:
In Bosnia Herzegovina the development of clear policy objectives and endorsement of a long-term, coherent and mutual agricultural and rural development policy have also been affected by structural problems: a lack of reliable information on population and other relevant issues, the absence of an adequate land registry system and cadastre. Moreover in BiH the agricultural and rural sectors are characterized by many factors that have typically affected transition countries such as land fragmentation, lack of agricultural mechanization and outdated production technologies, and rural aging, high unemployment and out-migration. In such a framework the condition and role of women in rural areas suffered for the lack of gender disaggregated data and a consequent poor information that lead to the exclusion of gender related questions in the agenda of public institutions and to the absence of targeted policy interventions. The aim of the research is to investigate the role and condition of women in the rural development process of Republic of Srpska and to analyze the capacity of extension services to stimulate their empowerment. Specific research questions include the status of women in the rural areas of Republic of Srpska, the role of government in fostering the empowerment of rural women, and the role of the extension service in supporting rural women. The methodology - inspired by the case study method developed by R. Yin - is designed along the three specific research questions that are used as building blocks. Each of the three research questions is investigated with a combination of methodological tools - including surveys, experts interviews and focus groups - aimed to overcome the lack of data and knowledge that characterize the research objectives.
Resumo:
This thesis studies how commercial practice is developing with artificial intelligence (AI) technologies and discusses some normative concepts in EU consumer law. The author analyses the phenomenon of 'algorithmic business', which defines the increasing use of data-driven AI in marketing organisations for the optimisation of a range of consumer-related tasks. The phenomenon is orienting business-consumer relations towards some general trends that influence power and behaviors of consumers. These developments are not taking place in a legal vacuum, but against the background of a normative system aimed at maintaining fairness and balance in market transactions. The author assesses current developments in commercial practices in the context of EU consumer law, which is specifically aimed at regulating commercial practices. The analysis is critical by design and without neglecting concrete practices tries to look at the big picture. The thesis consists of nine chapters divided in three thematic parts. The first part discusses the deployment of AI in marketing organisations, a brief history, the technical foundations, and their modes of integration in business organisations. In the second part, a selected number of socio-technical developments in commercial practice are analysed. The following are addressed: the monitoring and analysis of consumers’ behaviour based on data; the personalisation of commercial offers and customer experience; the use of information on consumers’ psychology and emotions, the mediation through marketing conversational applications. The third part assesses these developments in the context of EU consumer law and of the broader policy debate concerning consumer protection in the algorithmic society. In particular, two normative concepts underlying the EU fairness standard are analysed: manipulation, as a substantive regulatory standard that limits commercial behaviours in order to protect consumers’ informed and free choices and vulnerability, as a concept of social policy that portrays people who are more exposed to marketing practices.
Resumo:
This dissertation explores the link between hate crimes that occurred in the United Kingdom in June 2017, June 2018 and June 2019 through the posts of a robust sample of Conservative and radical right users on Twitter. In order to avoid the traditional challenges of this kind of research, I adopted a four staged research protocol that enabled me to merge content produced by a group of randomly selected users to observe the phenomenon from different angles. I collected tweets from thirty Conservative/right wing accounts for each month of June over the three years with the help of programming languages such as Python and CygWin tools. I then examined the language of my data focussing on humorous content in order to reveal whether, and if so how, radical users online often use humour as a tool to spread their views in conditions of heightened disgust and wide-spread political instability. A reflection on humour as a moral occurrence, expanding on the works of Christie Davies as well as applying recent findings on the behavioural immune system on online data, offers new insights on the overlooked humorous nature of radical political discourse. An unorthodox take on the moral foundations pioneered by Jonathan Haidt enriched my understanding of the analysed material through the addition of a moral-based layer of enquiry to my more traditional content-based one. This convergence of theoretical, data driven and real life events constitutes a viable “collection of strategies” for academia, data scientists; NGO’s fighting hate crimes and the wider public alike. Bringing together the ideas of Davies, Haidt and others to my data, helps us to perceive humorous online content in terms of complex radical narratives that are all too often compressed into a single tweet.
Resumo:
The research project is focused on the investigation of the polymorphism of crystalline molecular material for organic semiconductor applications under non-ambient conditions, and the solid-state characterization and crystal structure determination of the different polymorphic forms. In particular, this research project has tackled the investigation and characterization of the polymorphism of perylene diimides (PDIs) derivatives at high temperatures and pressures, in particular N,N’-dialkyl-3,4,9,10-perylendiimide (PDI-Cn, with n = 5, 6, 7, 8). These molecules are characterized by excellent chemical, thermal, and photostability, high electron affinity, strong absorption in the visible region, low LUMO energies, good air stability, and good charge transport properties, which can be tuned via functionalization; these features make them promising n-type organic semiconductor materials for several applications such as OFETs, OPV cells, laser dye, sensors, bioimaging, etc. The thermal characterization of PDI-Cn was carried out by a combination of differential scanning calorimetry, variable temperature X-ray diffraction, hot-stage microscopy, and in the case of PDI-C5 also variable temperature Raman spectroscopy. Whereas crystal structure determination was carried out by both Single Crystal and Powder X-ray diffraction. Moreover, high-pressure polymorphism via pressure-dependent UV-Vis absorption spectroscopy and high-pressure Single Crystal X-ray diffraction was carried out in this project. A data-driven approach based on a combination of self-organizing maps (SOM) and principal component analysis (PCA) is also reported was used to classify different π-stacking arrangements of PDI derivatives into families of similar crystal packing. Besides the main project, in the framework of structure-property analysis under non-ambient conditions, the structural investigation of the water loss in Pt- and Pd- based vapochromic potassium/lithium salts upon temperature, and the investigation of structure-mechanical property relationships in polymorphs of a thienopyrrolyldione endcapped oligothiophene (C4-NT3N) are reported.
Resumo:
Advanced analytical methodologies were developed to characterize new potential active MTDLs on isolated targets involved in the first stages of Alzheimer’s disease (AD). In addition, the methods investigated drug-protein bindings and evaluated protein-protein interactions involved in the neurodegeneration. A high-throughput luminescent assay allowed the study of the first in class GSK-3β/ HDAC dual inhibitors towards the enzyme GSK-3β. The method was able to identify an innovative disease-modifying agent with an activity in the micromolar range both on GSK-3β, HDAC1 and HDAC6. Then, the same assay reliably and quickly selected true positive hit compounds among natural Amaryllidaceae alkaloids tested against GSK-3β. Hence, given the central role of the amyloid pathway in the multifactorial nature of AD, a multi-methodological approach based on mass spectrometry (MS), circular dichroism spectroscopy (CD) and ThT assay was applied to characterize the potential interaction of CO releasing molecules (CORMs) with Aβ1-42 peptide. The comprehensive method provided reliable information on the different steps of the fibrillation process and regarding CORMs mechanism of action. Therefore, the optimal CORM-3/Aβ1−42 ratio in terms of inhibitory effect was identified by mass spectrometry. CD analysis confirmed the stabilizing effect of CORM-3 on the Aβ1−42 peptide soluble form and the ThT Fluorescent Analysis ensured that the entire fibrillation process was delayed. Then the amyloid aggregation process was studied in view of a possible correlation with AD lipid brain alterations. Therefore, SH-SY5Y cells were treated with increasing concentration of Aß1-42 at different times and the samples were analysed by a RP-UHPLC system coupled with a high-resolution quadrupole TOF mass spectrometer in comprehensive data-independent SWATH acquisition mode. Each lipid class profiling in SH-SY5Y cells treated with Aß1-42 was compared to the one obtained from the untreated. The approach underlined some peculiar lipid alterations, suitable as biomarkers, that might be correlated to Aß1-42 different aggregation species.
Resumo:
Biobanks are key infrastructures in data-driven biomedical research. The counterpoint of this optimistic vision is the reality of biobank governance, which must address various ethical, legal and social issues, especially in terms of open consent, privacy and secondary uses which, if not sufficiently resolved, may undermine participants’ and society’s trust in biobanking. The effect of the digital paradigm on biomedical research has only accentuated these issues by adding new pressure for the data protection of biobank participants against the risks of covert discrimination, abuse of power against individuals and groups, and critical commercial uses. Moreover, the traditional research-ethics framework has been unable to keep pace with the transformative developments of the digital era, and has proven inadequate in protecting biobank participants and providing guidance for ethical practices. To this must be added the challenge of an increased tendency towards exploitation and the commercialisation of personal data in the field of biomedical research, which may undermine the altruistic and solidaristic values associated with biobank participation and risk losing alignment with societal interests in biobanking. My research critically analyses, from a bioethical perspective, the challenges and the goals of biobank governance in data-driven biomedical research in order to understand the conditions for the implementation of a governance model that can foster biomedical research and innovation, while ensuring adequate protection for biobank participants and an alignment of biobank procedures and policies with society’s interests and expectations. The main outcome is a conceptualisation of a socially-oriented and participatory model of biobanks by proposing a new ethical framework that relies on the principles of transparency, data protection and participation to tackle the key challenges of biobanks in the digital age and that is well-suited to foster these goals.
Resumo:
Long-term monitoring of acoustical environments is gaining popularity thanks to the relevant amount of scientific and engineering insights that it provides. The increasing interest is due to the constant growth of storage capacity and computational power to process large amounts of data. In this perspective, machine learning (ML) provides a broad family of data-driven statistical techniques to deal with large databases. Nowadays, the conventional praxis of sound level meter measurements limits the global description of a sound scene to an energetic point of view. The equivalent continuous level Leq represents the main metric to define an acoustic environment, indeed. Finer analyses involve the use of statistical levels. However, acoustic percentiles are based on temporal assumptions, which are not always reliable. A statistical approach, based on the study of the occurrences of sound pressure levels, would bring a different perspective to the analysis of long-term monitoring. Depicting a sound scene through the most probable sound pressure level, rather than portions of energy, brought more specific information about the activity carried out during the measurements. The statistical mode of the occurrences can capture typical behaviors of specific kinds of sound sources. The present work aims to propose an ML-based method to identify, separate and measure coexisting sound sources in real-world scenarios. It is based on long-term monitoring and is addressed to acousticians focused on the analysis of environmental noise in manifold contexts. The presented method is based on clustering analysis. Two algorithms, Gaussian Mixture Model and K-means clustering, represent the main core of a process to investigate different active spaces monitored through sound level meters. The procedure has been applied in two different contexts: university lecture halls and offices. The proposed method shows robust and reliable results in describing the acoustic scenario and it could represent an important analytical tool for acousticians.
Resumo:
In this thesis we focus on the analysis and interpretation of time dependent deformations recorded through different geodetic methods. Firstly, we apply a variational Bayesian Independent Component Analysis (vbICA) technique to GPS daily displacement solutions, to separate the postseismic deformation that followed the mainshocks of the 2016-2017 Central Italy seismic sequence from the other, hydrological, deformation sources. By interpreting the signal associated with the postseismic relaxation, we model an afterslip distribution on the faults involved by the mainshocks consistent with the co-seismic models available in literature. We find evidences of aseismic slip on the Paganica fault, responsible for the Mw 6.1 2009 L’Aquila earthquake, highlighting the importance of aseismic slip and static stress transfer to properly model the recurrence of earthquakes on nearby fault segments. We infer a possible viscoelastic relaxation of the lower crust as a contributing mechanism to the postseismic displacements. We highlight the importance of a proper separation of the hydrological signals for an accurate assessment of the tectonic processes, especially in cases of mm-scale deformations. Contextually, we provide a physical explanation to the ICs associated with the observed hydrological processes. In the second part of the thesis, we focus on strain data from Gladwin Tensor Strainmeters, working on the instruments deployed in Taiwan. We develop a novel approach, completely data driven, to calibrate these strainmeters. We carry out a joint analysis of geodetic (strainmeters, GPS and GRACE products) and hydrological (rain gauges and piezometers) data sets, to characterize the hydrological signals in Southern Taiwan. Lastly, we apply the calibration approach here proposed to the strainmeters recently installed in Central Italy. We provide, as an example, the detection of a storm that hit the Umbria-Marche regions (Italy), demonstrating the potential of strainmeters in following the dynamics of deformation processes with limited spatio-temporal signature
Resumo:
The integration of quantitative data from movement analysis technologies is reshaping the analysis of athletes’ performances and injury mitigation, e.g., anterior cruciate ligament (ACL) rupture. Most of the movement assessments are performed in laboratory environments. Recent progress provides the chance to shift the paradigm to a more ecological approach with sport-specific elements and a closer examination of “real” movement patterns associated with performance and (ACL) injury risk. The present PhD thesis aimed at investigating the on-field motion patterns related to performance and injury prevention in young football players. The objectives of the thesis were: (I) in-lab measures of high-dynamics movements were used to validate wearable inertial sensors technology; (II) in-laboratory and on-field agility movement tasks were compared to inspect the effect of football-specific environment; (III) on-field analysis was conducted to challenge wearable sensors technology in the assessment of dangerous movement patterns towards the ACL rupture; (IV) an overview of technologies that could shape present and future assessment of ACL injury risk in daily practice was presented. The validity of wearables in the assessment of high-dynamics movements was confirmed. Relevant differences emerged between the movements performed in a laboratory setting and on the football pitch, supporting the inclusion of an ecological dynamics approach in preventive protocols. The on-field analysis of football-specific movement tasks demonstrated good reliability of wearable sensors and the presence of residual dangerous patterns in the injured players. A tool to inspect at-risk movement patterns on the field through objective measurements was presented. It discussed how potential alternatives to wearable inertial sensors embrace artificial intelligence and closer collaboration between clinical and technical expertise. The present thesis was meant to contribute to setting the basis for data-driven prevention protocols. A deeper comprehension of injury-related principles and counteractions will contribute to preserving athletes’ careers and health over time.
Resumo:
Protected crop production is a modern and innovative approach to cultivating plants in a controlled environment to optimize growth, yield, and quality. This method involves using structures such as greenhouses or tunnels to create a sheltered environment. These productive solutions are characterized by a careful regulation of variables like temperature, humidity, light, and ventilation, which collectively contribute to creating an optimal microclimate for plant growth. Heating, cooling, and ventilation systems are used to maintain optimal conditions for plant growth, regardless of external weather fluctuations. Protected crop production plays a crucial role in addressing challenges posed by climate variability, population growth, and food security. Similarly, animal husbandry involves providing adequate nutrition, housing, medical care and environmental conditions to ensure animal welfare. Then, sustainability is a critical consideration in all forms of agriculture, including protected crop and animal production. Sustainability in animal production refers to the practice of producing animal products in a way that minimizes negative impacts on the environment, promotes animal welfare, and ensures the long-term viability of the industry. Then, the research activities performed during the PhD can be inserted exactly in the field of Precision Agriculture and Livestock farming. Here the focus is on the computational fluid dynamic (CFD) approach and environmental assessment applied to improve yield, resource efficiency, environmental sustainability, and cost savings. It represents a significant shift from traditional farming methods to a more technology-driven, data-driven, and environmentally conscious approach to crop and animal production. On one side, CFD is powerful and precise techniques of computer modeling and simulation of airflows and thermo-hygrometric parameters, that has been applied to optimize the growth environment of crops and the efficiency of ventilation in pig barns. On the other side, the sustainability aspect has been investigated and researched in terms of Life Cycle Assessment analyses.
Resumo:
The integration of distributed and ubiquitous intelligence has emerged over the last years as the mainspring of transformative advancements in mobile radio networks. As we approach the era of “mobile for intelligence”, next-generation wireless networks are poised to undergo significant and profound changes. Notably, the overarching challenge that lies ahead is the development and implementation of integrated communication and learning mechanisms that will enable the realization of autonomous mobile radio networks. The ultimate pursuit of eliminating human-in-the-loop constitutes an ambitious challenge, necessitating a meticulous delineation of the fundamental characteristics that artificial intelligence (AI) should possess to effectively achieve this objective. This challenge represents a paradigm shift in the design, deployment, and operation of wireless networks, where conventional, static configurations give way to dynamic, adaptive, and AI-native systems capable of self-optimization, self-sustainment, and learning. This thesis aims to provide a comprehensive exploration of the fundamental principles and practical approaches required to create autonomous mobile radio networks that seamlessly integrate communication and learning components. The first chapter of this thesis introduces the notion of Predictive Quality of Service (PQoS) and adaptive optimization and expands upon the challenge to achieve adaptable, reliable, and robust network performance in dynamic and ever-changing environments. The subsequent chapter delves into the revolutionary role of generative AI in shaping next-generation autonomous networks. This chapter emphasizes achieving trustworthy uncertainty-aware generation processes with the use of approximate Bayesian methods and aims to show how generative AI can improve generalization while reducing data communication costs. Finally, the thesis embarks on the topic of distributed learning over wireless networks. Distributed learning and its declinations, including multi-agent reinforcement learning systems and federated learning, have the potential to meet the scalability demands of modern data-driven applications, enabling efficient and collaborative model training across dynamic scenarios while ensuring data privacy and reducing communication overhead.
Resumo:
In this thesis, the viability of the Dynamic Mode Decomposition (DMD) as a technique to analyze and model complex dynamic real-world systems is presented. This method derives, directly from data, computationally efficient reduced-order models (ROMs) which can replace too onerous or unavailable high-fidelity physics-based models. Optimizations and extensions to the standard implementation of the methodology are proposed, investigating diverse case studies related to the decoding of complex flow phenomena. The flexibility of this data-driven technique allows its application to high-fidelity fluid dynamics simulations, as well as time series of real systems observations. The resulting ROMs are tested against two tasks: (i) reduction of the storage requirements of high-fidelity simulations or observations; (ii) interpolation and extrapolation of missing data. The capabilities of DMD can also be exploited to alleviate the cost of onerous studies that require many simulations, such as uncertainty quantification analysis, especially when dealing with complex high-dimensional systems. In this context, a novel approach to address parameter variability issues when modeling systems with space and time-variant response is proposed. Specifically, DMD is merged with another model-reduction technique, namely the Polynomial Chaos Expansion, for uncertainty quantification purposes. Useful guidelines for DMD deployment result from the study, together with the demonstration of its potential to ease diagnosis and scenario analysis when complex flow processes are involved.
Resumo:
In this thesis we discuss in what ways computational logic (CL) and data science (DS) can jointly contribute to the management of knowledge within the scope of modern and future artificial intelligence (AI), and how technically-sound software technologies can be realised along the path. An agent-oriented mindset permeates the whole discussion, by stressing pivotal role of autonomous agents in exploiting both means to reach higher degrees of intelligence. Accordingly, the goals of this thesis are manifold. First, we elicit the analogies and differences among CL and DS, hence looking for possible synergies and complementarities along 4 major knowledge-related dimensions, namely representation, acquisition (a.k.a. learning), inference (a.k.a. reasoning), and explanation. In this regard, we propose a conceptual framework through which bridges these disciplines can be described and designed. We then survey the current state of the art of AI technologies, w.r.t. their capability to support bridging CL and DS in practice. After detecting lacks and opportunities, we propose the notion of logic ecosystem as the new conceptual, architectural, and technological solution supporting the incremental integration of symbolic and sub-symbolic AI. Finally, we discuss how our notion of logic ecosys- tem can be reified into actual software technology and extended towards many DS-related directions.