24 resultados para Confusion Assessment Method
Resumo:
Dysfunction of Autonomic Nervous System (ANS) is a typical feature of chronic heart failure and other cardiovascular disease. As a simple non-invasive technology, heart rate variability (HRV) analysis provides reliable information on autonomic modulation of heart rate. The aim of this thesis was to research and develop automatic methods based on ANS assessment for evaluation of risk in cardiac patients. Several features selection and machine learning algorithms have been combined to achieve the goals. Automatic assessment of disease severity in Congestive Heart Failure (CHF) patients: a completely automatic method, based on long-term HRV was proposed in order to automatically assess the severity of CHF, achieving a sensitivity rate of 93% and a specificity rate of 64% in discriminating severe versus mild patients. Automatic identification of hypertensive patients at high risk of vascular events: a completely automatic system was proposed in order to identify hypertensive patients at higher risk to develop vascular events in the 12 months following the electrocardiographic recordings, achieving a sensitivity rate of 71% and a specificity rate of 86% in identifying high-risk subjects among hypertensive patients. Automatic identification of hypertensive patients with history of fall: it was explored whether an automatic identification of fallers among hypertensive patients based on HRV was feasible. The results obtained in this thesis could have implications both in clinical practice and in clinical research. The system has been designed and developed in order to be clinically feasible. Moreover, since 5-minute ECG recording is inexpensive, easy to assess, and non-invasive, future research will focus on the clinical applicability of the system as a screening tool in non-specialized ambulatories, in order to identify high-risk patients to be shortlisted for more complex investigations.
Resumo:
Movement analysis carried out in laboratory settings is a powerful, but costly solution since it requires dedicated instrumentation, space and personnel. Recently, new technologies such as the magnetic and inertial measurement units (MIMU) are becoming widely accepted as tools for the assessment of human motion in clinical and research settings. They are relatively easy-to-use and potentially suitable for estimating gait kinematic features, including spatio-temporal parameters. The objective of this thesis regards the development and testing in clinical contexts of robust MIMUs based methods for assessing gait spatio-temporal parameters applicable across a number of different pathological gait patterns. First, considering the need of a solution the least obtrusive as possible, the validity of the single unit based approach was explored. A comparative evaluation of the performance of various methods reported in the literature for estimating gait temporal parameters using a single unit attached to the trunk first in normal gait and then in different pathological gait conditions was performed. Then, the second part of the research headed towards the development of new methods for estimating gait spatio-temporal parameters using shank worn MIMUs on different pathological subjects groups. In addition to the conventional gait parameters, new methods for estimating the changes of the direction of progression were explored. Finally, a new hardware solution and relevant methodology for estimating inter-feet distance during walking was proposed. Results of the technical validation of the proposed methods at different walking speeds and along different paths against a gold standard were reported and showed that the use of two MIMUs attached to the lower limbs associated with a robust method guarantee a much higher accuracy in determining gait spatio-temporal parameters. In conclusion, the proposed methods could be reliably applied to various abnormal gaits obtaining in some cases a comparable level of accuracy with respect to normal gait.
Resumo:
In food industry, quality assurance requires low cost methods for the rapid assessment of the parameters that affect product stability. Foodstuffs are complex in their structure, mainly composed by gaseous, liquid and solid phases which often coexist in the same product. Special attention is given to water, concerned as natural component of the major food product or as added ingredient of a production process. Particularly water is structurally present in the matrix and not completely available. In this way, water can be present in foodstuff in many different states: as water of crystallization, bound to protein or starch molecules, entrapped in biopolymer networks or adsorbed on solid surfaces of porous food particles. The traditional technique for the assessment of food quality give reliable information but are destructive, time consuming and unsuitable for on line application. The techniques proposed answer to the limited disposition of time and could be able to characterize the main compositional parameters. Dielectric interaction response is mainly related to water and could be useful not only to provide information on the total content but also on the degree of mobility of this ubiquitous molecule in different complex food matrix. In this way the proposal of this thesis is to answer at this need. Dielectric and electric tool can be used for the scope and led us to describe the complex food matrix and predict food characteristic. The thesis is structured in three main part, in the first one some theoretical tools are recalled to well assess the food parameter involved in the quality definition and the techniques able to reply at the problem emerged. The second part explains the research conducted and the experimental plans are illustrated in detail. Finally the last section is left for rapid method easily implementable in an industrial process.
Resumo:
Coastal flooding poses serious threats to coastal areas around the world, billions of dollars in damage to property and infrastructure, and threatens the lives of millions of people. Therefore, disaster management and risk assessment aims at detecting vulnerability and capacities in order to reduce coastal flood disaster risk. In particular, non-specialized researchers, emergency management personnel, and land use planners require an accurate, inexpensive method to determine and map risk associated with storm surge events and long-term sea level rise associated with climate change. This study contributes to the spatially evaluation and mapping of social-economic-environmental vulnerability and risk at sub-national scale through the development of appropriate tools and methods successfully embedded in a Web-GIS Decision Support System. A new set of raster-based models were studied and developed in order to be easily implemented in the Web-GIS framework with the purpose to quickly assess and map flood hazards characteristics, damage and vulnerability in a Multi-criteria approach. The Web-GIS DSS is developed recurring to open source software and programming language and its main peculiarity is to be available and usable by coastal managers and land use planners without requiring high scientific background in hydraulic engineering. The effectiveness of the system in the coastal risk assessment is evaluated trough its application to a real case study.
Resumo:
Aggregate masonry buildings have been generated over the years, allowing the interaction of different aggregated structural units under seismic action. The first part of this work is focused on the seismic vulnerability and fragility assessment of clay brick masonry buildings, sited in Bologna (Italy), with reference, at first, to single isolated structural units, by means of the Response Surface statistical method, taking into account some variabilities and uncertainties involved in the problem. The seismic action was defined by means of a group of selected registered accelerograms, in order to analyse the effect of the variability of the earthquakes. Identical and different structural units chosen by the Response Surface generated simulations are then aggregated in row, in order to compare the collapse PGA referred to the isolated structural unit and the one referred to the aggregate structure. The second part is focused on the seismic vulnerability and fragility assessment of stone masonry structures, sited in Seixal (Portugal), applying a methodology similar to that used for the buildings sited in Bologna. Since the availability of several information, the analyses involved the assessment of the most prevalent structural typologies in the area, considering the variability of a set of structural and geometrical parameters. The results highlighted the importance of the statistic procedures as method able to consider the variabilities and the uncertainties involved in the problem of the fragility of unreinforced masonry structures, in absence of accurate investigations on the structural typologies, as in the Seixal case study. Furthermore, it was showed that the structural units along the unreinforced clay brick or stone masonry aggregates cannot be analysed as isolated, as they are affected by the effect of the aggregation with adjacent structural units, according to the different directions of the seismic action considered and to their different position along the row aggregate.
Resumo:
At the beginning, this Ph.D. project led to an overview of the most common and emerging types of fraud and possible countermeasures in the olive oil sector. Furthermore, possible weaknesses in the current conformity check system for olive oil were highlighted. Among those, despite the organoleptic assessment is a fundamental tool for establishing the virgin olive oils (VOOs) quality grade, the scientific community has evidenced some drawbacks in it. In particular, the application of instrumental screening methods to support the panel test could reduce the work of sensory panels and the cost of this analysis (e.g. for industries, distributors, public and private control laboratories), permitting the increase in the number and the efficiency of the controls. On this basis, a research line called “Quantitative Panel Test” is one of the main expected outcomes of the OLEUM project that is also partially discussed in this doctoral dissertation. In this framework, analytical activities were carried out, within this PhD project, aimed to develop and validate analytical protocols for the study of the profiles in volatile compounds (VOCs) of the VOOs headspace. Specifically, two chromatographic approaches, one targeted and one semi-targeted, to determine VOCs were investigated in this doctoral thesis. The obtained results, will allow the possible establishment of concentration limits and ranges of selected volatile markers, as related to fruitiness and defects, with the aim to support the panel test in the commercial categorization of VOOs. In parallel, a rapid instrumental screening method based on the analysis of VOCs has been investigated to assist the panel test through a fast pre-classification of VOOs samples based on a known level of probability, thus increasing the efficiency of quality control.
Resumo:
With population ageing, spine diseases have an increasing prevalence and induce high economic and social costs. The development of minimally invasive surgeries allows reducing the surgery-associated risks in elderly and polymorbid patients, and save costs by treating more patients in shorter time and reducing the complications. Percutaneous Cement Discoplasty (PCD) is a minimally invasive technique developed to treat highly degenerated intervertebral discs exhibiting a vacuum phenomenon. Filling the disc with bone cement creates a stand-alone spacer which partially restores the disc height and re-opens the foraminal space. PCD has recently been introduced to clinical use. However, the spine biomechanics following this treatment remained unravelled. The aim of this PhD thesis is to bridge the clinical experience with in vitro methodologies, to provide a multilateral evaluation of PCD outcome and a better understanding of its impact on the spine biomechanics, and of its possible contraindications. Firstly, a suitable in vitro porcine model to test the biomechanics of discoplasty by comparing specimens in the preoperative and postoperative conditions was developed. The methodology was then applied to investigate the biomechanics of discoplasty in cadaveric human segments. The in vitro specimens were mechanically investigated in flexion and extension, while a DIC system quantified the range of motion, disc height, and strains on the disc surface. Then, a versatile tool to measure the impact of discoplasty on the foramen space was developed and applied both to clinical and experimental work. The vertebrae reconstructed from CT scans were registered to match the loading configuration, using ex vivo DIC measurements under loading. The foramen volumetric changes caused by PCD was measured using a 3D geometrical method clinically developed by the research group. In conclusion, this project significantly extended the understanding of PCD biomechanics, highlighting its benefits in the treatment of advanced cases of intervertebral disc degeneration.
Resumo:
The challenges of the current global food systems are often framed around feeding the world's growing population while meeting sustainable development for future generations. Globalization has brought to a fragmentation of food spaces, leading to a flexible and mutable supply chain. This poses a major challenge to food and nutrition security, affecting also rural-urban dynamics in territories. Furthermore, the recent crises have highlighted the vulnerability to shocks and disruptions of the food systems and the eco-system due to the intensive management of natural, human and economic capital. Hence, a sustainable and resilient transition of the food systems is required through a multi-faceted approach that tackles the causes of unsustainability and promotes sustainable practices at all levels of the food system. In this respect, a territorial approach becomes a relevant entry point of analysis for the food system’s multifunctionality and can support the evaluation of sustainability by quantifying impacts associated with quantitative methods and understanding the territorial responsibility of different actors with qualitative ones. Against this background the present research aims to i) investigate the environmental, costing and social indicators suitable for a scoring system able to measure the integrated sustainability performance of food initiatives within the City/Region territorial context; ii) develop a territorial assessment framework to measure sustainability impacts of agricultural systems; and iii) define an integrated methodology to match production and consumption at a territorial level to foster a long-term vision of short food supply chains. From a methodological perspective, the research proposes a mixed quantitative and qualitative research method. The outcomes provide an in-depth view into the environmental and socio-economic impacts of food systems at the territorial level, investigating possible indicators, frameworks, and business strategies to foster their future sustainable development.
Resumo:
The aim of this thesis is to investigate a field that until a few years ago was foreign to and distant from the penal system. The purpose of this undertaking is to account for the role that technology could plays in the Italian Criminal Law system. More specifically, this thesis attempts to scrutinize a very intricate phase of adjudication. After deciding on the type of an individual's liability, a judge must decide on the severity of the penalty. This type of decision implies a prognostic assessment that looks to the future. It is precisely in this field and in prognostic assessments that, as has already been anticipated in the United, instruments and processes are inserted in the pre-trial but also in the decision-making phase. In this contribution, we attempt to describe the current state of this field, trying, as a matter of method, to select the most relevant or most used tools. Using comparative and qualitative methods, the uses of some of these instruments in the supranational legal system are analyzed. Focusing attention on the Italian system, an attempt was made to investigate the nature of the element of an individual's ‘social dangerousness’ (pericolosità sociale) and capacity to commit offences, types of assessments that are fundamental in our system because they are part of various types of decisions, including the choice of the best sanctioning treatment. It was decided to turn our attention to this latter field because it is believed that the judge does not always have the time, the means and the ability to assess all the elements of a subject and identify the best 'individualizing' treatment in order to fully realize the function of Article 27, paragraph 3 of the Constitution.