19 resultados para Compositional data analysis-roots in geosciences


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Waste management represents an important issue in our society and Waste-to-Energy incineration plants have been playing a significant role in the last decades, showing an increased importance in Europe. One of the main issues posed by waste combustion is the generation of air contaminants. Particular concern is present about acid gases, mainly hydrogen chloride and sulfur oxides, due to their potential impact on the environment and on human health. Therefore, in the present study the main available technological options for flue gas treatment were analyzed, focusing on dry treatment systems, which are increasingly applied in Municipal Solid Wastes (MSW) incinerators. An operational model was proposed to describe and optimize acid gas removal process. It was applied to an existing MSW incineration plant, where acid gases are neutralized in a two-stage dry treatment system. This process is based on the injection of powdered calcium hydroxide and sodium bicarbonate in reactors followed by fabric filters. HCl and SO2 conversions were expressed as a function of reactants flow rates, calculating model parameters from literature and plant data. The implementation in a software for process simulation allowed the identification of optimal operating conditions, taking into account the reactant feed rates, the amount of solid products and the recycle of the sorbent. Alternative configurations of the reference plant were also assessed. The applicability of the operational model was extended developing also a fundamental approach to the issue. A predictive model was developed, describing mass transfer and kinetic phenomena governing the acid gas neutralization with solid sorbents. The rate controlling steps were identified through the reproduction of literature data, allowing the description of acid gas removal in the case study analyzed. A laboratory device was also designed and started up to assess the required model parameters.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Big data are reshaping the way we interact with technology, thus fostering new applications to increase the safety-assessment of foods. An extraordinary amount of information is analysed using machine learning approaches aimed at detecting the existence or predicting the likelihood of future risks. Food business operators have to share the results of these analyses when applying to place on the market regulated products, whereas agri-food safety agencies (including the European Food Safety Authority) are exploring new avenues to increase the accuracy of their evaluations by processing Big data. Such an informational endowment brings with it opportunities and risks correlated to the extraction of meaningful inferences from data. However, conflicting interests and tensions among the involved entities - the industry, food safety agencies, and consumers - hinder the finding of shared methods to steer the processing of Big data in a sound, transparent and trustworthy way. A recent reform in the EU sectoral legislation, the lack of trust and the presence of a considerable number of stakeholders highlight the need of ethical contributions aimed at steering the development and the deployment of Big data applications. Moreover, Artificial Intelligence guidelines and charters published by European Union institutions and Member States have to be discussed in light of applied contexts, including the one at stake. This thesis aims to contribute to these goals by discussing what principles should be put forward when processing Big data in the context of agri-food safety-risk assessment. The research focuses on two interviewed topics - data ownership and data governance - by evaluating how the regulatory framework addresses the challenges raised by Big data analysis in these domains. The outcome of the project is a tentative Roadmap aimed to identify the principles to be observed when processing Big data in this domain and their possible implementations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This thesis investigates the legal, ethical, technical, and psychological issues of general data processing and artificial intelligence practices and the explainability of AI systems. It consists of two main parts. In the initial section, we provide a comprehensive overview of the big data processing ecosystem and the main challenges we face today. We then evaluate the GDPR’s data privacy framework in the European Union. The Trustworthy AI Framework proposed by the EU’s High-Level Expert Group on AI (AI HLEG) is examined in detail. The ethical principles for the foundation and realization of Trustworthy AI are analyzed along with the assessment list prepared by the AI HLEG. Then, we list the main big data challenges the European researchers and institutions identified and provide a literature review on the technical and organizational measures to address these challenges. A quantitative analysis is conducted on the identified big data challenges and the measures to address them, which leads to practical recommendations for better data processing and AI practices in the EU. In the subsequent part, we concentrate on the explainability of AI systems. We clarify the terminology and list the goals aimed at the explainability of AI systems. We identify the reasons for the explainability-accuracy trade-off and how we can address it. We conduct a comparative cognitive analysis between human reasoning and machine-generated explanations with the aim of understanding how explainable AI can contribute to human reasoning. We then focus on the technical and legal responses to remedy the explainability problem. In this part, GDPR’s right to explanation framework and safeguards are analyzed in-depth with their contribution to the realization of Trustworthy AI. Then, we analyze the explanation techniques applicable at different stages of machine learning and propose several recommendations in chronological order to develop GDPR-compliant and Trustworthy XAI systems.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The COVID-19 pandemic, sparked by the SARS-CoV-2 virus, stirred global comparisons to historical pandemics. Initially presenting a high mortality rate, it later stabilized globally at around 0.5-3%. Patients manifest a spectrum of symptoms, necessitating efficient triaging for appropriate treatment strategies, ranging from symptomatic relief to antivirals or monoclonal antibodies. Beyond traditional approaches, emerging research suggests a potential link between COVID-19 severity and alterations in gut microbiota composition, impacting inflammatory responses. However, most studies focus on severe hospitalized cases without standardized criteria for severity. Addressing this gap, the first study in this thesis spans diverse COVID-19 severity levels, utilizing 16S rRNA amplicon sequencing on fecal samples from 315 subjects. The findings highlight significant microbiota differences correlated with severity. Machine learning classifiers, including a multi-layer convoluted neural network, demonstrated the potential of microbiota compositional data to predict patient severity, achieving an 84.2% mean balanced accuracy starting one week post-symptom onset. These preliminary results underscore the gut microbiota's potential as a biomarker in clinical decision-making for COVID-19. The second study delves into mild COVID-19 cases, exploring their implications for ‘long COVID’ or Post-Acute COVID-19 Syndrome (PACS). Employing longitudinal analysis, the study unveils dynamic shifts in microbial composition during the acute phase, akin to severe cases. Innovative techniques, including network approaches and spline-based longitudinal analysis, were deployed to assess microbiota dynamics and potential associations with PACS. The research suggests that even in mild cases, similar mechanisms to hospitalized patients are established regarding changes in intestinal microbiota during the acute phase of the infection. These findings lay the foundation for potential microbiota-targeted therapies to mitigate inflammation, potentially preventing long COVID symptoms in the broader population. In essence, these studies offer valuable insights into the intricate relationships between COVID-19 severity, gut microbiota, and the potential for innovative clinical applications.