17 resultados para Complex networks. Magnetic system. Metropolis


Relevância:

40.00% 40.00%

Publicador:

Resumo:

The extended visual network, which includes occipital, temporal and parietal posterior cortices, is a system characterized by an intrinsic connectivity consisting of bidirectional projections. This network is composed of feedforward and feedback projections, some hierarchically arranged and others bypassing intermediate areas, allowing direct communication across early and late stages of processing. Notably, the early visual cortex (EVC) receives considerably more feedback and lateral inputs than feedforward thalamic afferents, placing it at the receiving end of a complex cortical processing cascade, rather than just being the entrance stage of cortical processing of retinal input. The critical role of back-projections to visual cortices has been related to perceptual awareness, amplification of neural activity in lower order areas and improvement of stimulus processing. Recently, significant results have shown behavioural evidence suggesting the importance of reentrant projections in the human visual system, and demonstrated the feasibility of inducing their reversible modulation through a transcranial magnetic stimulation (TMS) paradigm named cortico-cortical paired associative stimulation (ccPAS). Here, a novel research line for the study of recurrent connectivity and its plasticity in the perceptual domain was put forward. In the present thesis, we used ccPAS with the aim of empowering the synaptic efficacy, and thus the connectivity, between the nodes of the visuocognitive system to evaluate the impact on behaviour. We focused on driving plasticity in specific networks entailing the elaboration of relevant social features of human faces (Chapters I & II), alongside the investigation of targeted pathways of sensory decisions (Chapter III). This allowed us to characterize perceptual outcomes which endorse the prominent role of the EVC in visual awareness, fulfilled by the activity of back-projections originating from distributed functional nodes.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The experimental projects discussed in this thesis are all related to the field of artificial molecular machines, specifically to systems composed of pseudorotaxane and rotaxane architectures. The characterization of the peculiar properties of these mechano-molecules is frequently associated with the analysis and elucidation of complex reaction networks; this latter aspect represents the main focus and central thread tying my thesis work. In each chapter, a specific project is described as summarized below: the focus of the first chapter is the realization and characterization of a prototype model of a photoactivated molecular transporter based on a pseudorotaxane architecture; in the second chapter is reported the design, synthesis, and characterization of a [2]rotaxane endowed with a dibenzylammonium station and a novel photochromic unit that acts as a recognition site for a DB24C8 crown ether macrocycle; in the last chapter is described the synthesis and characterization of a [3]rotaxane in which the relative number of rings and stations can be changed on command.