31 resultados para Ciência do Sistema Terra
Resumo:
This thesis tackles the problem of the automated detection of the atmospheric boundary layer (BL) height, h, from aerosol lidar/ceilometer observations. A new method, the Bayesian Selective Method (BSM), is presented. It implements a Bayesian statistical inference procedure which combines in an statistically optimal way different sources of information. Firstly atmospheric stratification boundaries are located from discontinuities in the ceilometer back-scattered signal. The BSM then identifies the discontinuity edge that has the highest probability to effectively mark the BL height. Information from the contemporaneus physical boundary layer model simulations and a climatological dataset of BL height evolution are combined in the assimilation framework to assist this choice. The BSM algorithm has been tested for four months of continuous ceilometer measurements collected during the BASE:ALFA project and is shown to realistically diagnose the BL depth evolution in many different weather conditions. Then the BASE:ALFA dataset is used to investigate the boundary layer structure in stable conditions. Functions from the Obukhov similarity theory are used as regression curves to fit observed velocity and temperature profiles in the lower half of the stable boundary layer. Surface fluxes of heat and momentum are best-fitting parameters in this exercise and are compared with what measured by a sonic anemometer. The comparison shows remarkable discrepancies, more evident in cases for which the bulk Richardson number turns out to be quite large. This analysis supports earlier results, that surface turbulent fluxes are not the appropriate scaling parameters for profiles of mean quantities in very stable conditions. One of the practical consequences is that boundary layer height diagnostic formulations which mainly rely on surface fluxes are in disagreement to what obtained by inspecting co-located radiosounding profiles.
Resumo:
The interaction between atmosphere–land–ocean–biosphere systems plays a prominent role on the atmospheric dynamics and on the convective rainfall distribution over the West Africa monsoon area during the boreal summer. In particular, the initialization of convective systems in the Sub – Sahelian region has been directly linked to soil moisture heterogeneities identified as the major triggering, development and propagation of convective systems. The present study aims at investigating African monsoon large scale convective dynamics and rainfall diurnal cycle through an exploration of the hypothesis behind the mechanisms of a monsoon phenomenon as an emergence of a collective dynamics of many propagating convective systems. Such hypothesis is based on the existence of an internal self – regulation mechanism among the various components. To achieve these results a multiple analysis was performed based on remote sensed rainfall dataset, and global and regional modelling data for a period of 5 seasons: 2004 - 2008. Satellite rainfall data and convective occurrence variability were studied for assessing typical spatio – temporal signatures and characteristics with an emphasis to the diurnal cycle footprint. A global model and regional model simulation datasets, specifically developed for this analysis and based on Regional Atmospheric Modelling System – RAMS, have been analysed. Results from numerical model datasets highlight the evidence of a synchronization between the destabilization of the convective boundary layer and rainfall occurrence due to the solar radiation forcing through the latent heat release. This supports the conclusion that the studied interacting systems are associated with a process of mutual adjustment of rhythms. Furthermore, this rainfall internal coherence was studied in relation to the West African Heat Low pressure system, which has a prominent role in the large scale summer variability over the Mediterranean area since it is acting as one of dynamic link between sub tropical and midlatitudes variability.
Resumo:
L’obiettivo di questo lavoro di tesi è di ottenere un’analisi climatica giornaliera ad alta risoluzione della precipitazione sul territorio del nord Italia realizzata con tecniche di controllo statistico, di analisi e di strumenti di descrizione dei risultati presentati nella recente letteratura. A tal fine, sono stati utilizzati i dati dell’Archivio ARCIS. In seguito alle fasi di controllo qualità, omogeneità e sincronicità i dati sono stati utilizzati per realizzare un’analisi giornaliera su grigliato regolare a 10 km di risoluzione utile alla rappresentazione della variabilità spazio-temporale della precipitazione sul Nord Italia per il periodo 1961-2005. I risultati di tale analisi mettono in evidenza dei valori medi di precipitazione annuale abbastanza intensi sulla parte centrale dell’arco Alpino, con massimi (oltre 2000 mm) sull’estremità orientale e sull’Appennino Ligure. Valori minimi (500 – 600 mm) sono osservati lungo le aree prospicienti il fiume Po, in Val d’Aosta ed in Alto Adige. La corrispondente analisi del trend temporale indica la presenza di lievi cali statisticamente significativi solo in aree limitate del territorio. In coerenza con questi risultati, la variazione nel tempo della precipitazione annuale mediata su tutto il territorio mette in evidenza un’intensa variabilità decennale, ma solo una lieve flessione lineare sull’intero periodo. Il numero annuo di giorni piovosi ed il 90° percentile della precipitazione giornaliera presentano invece trend lineari un po’ più pronunciati. In particolare, sul periodo considerato si nota un calo del numero di giorni piovosi su gran parte del territorio e solo su alcune aree del territorio un aumento dell’intensità del 90° percentile, sia a scala annuale che stagionale. Nell’ultima parte di questo lavoro è stato realizzato uno studio della relazione fra la forzante climatica e l’evoluzione della morfologia dell’Appennino Emiliano-Romagnolo. I risultati mostrano che a parità di quota, di pendenza e di litologia, la franosità è influenzata dalle precipitazioni.
Resumo:
In the last few years the resolution of numerical weather prediction (nwp) became higher and higher with the progresses of technology and knowledge. As a consequence, a great number of initial data became fundamental for a correct initialization of the models. The potential of radar observations has long been recognized for improving the initial conditions of high-resolution nwp models, while operational application becomes more frequent. The fact that many nwp centres have recently taken into operations convection-permitting forecast models, many of which assimilate radar data, emphasizes the need for an approach to providing quality information which is needed in order to avoid that radar errors degrade the model's initial conditions and, therefore, its forecasts. Environmental risks can can be related with various causes: meteorological, seismical, hydrological/hydraulic. Flash floods have horizontal dimension of 1-20 Km and can be inserted in mesoscale gamma subscale, this scale can be modeled only with nwp model with the highest resolution as the COSMO-2 model. One of the problems of modeling extreme convective events is related with the atmospheric initial conditions, in fact the scale dimension for the assimilation of atmospheric condition in an high resolution model is about 10 Km, a value too high for a correct representation of convection initial conditions. Assimilation of radar data with his resolution of about of Km every 5 or 10 minutes can be a solution for this problem. In this contribution a pragmatic and empirical approach to deriving a radar data quality description is proposed to be used in radar data assimilation and more specifically for the latent heat nudging (lhn) scheme. Later the the nvective capabilities of the cosmo-2 model are investigated through some case studies. Finally, this work shows some preliminary experiments of coupling of a high resolution meteorological model with an Hydrological one.
Resumo:
A year of satellite-borne lidar CALIOP data is analyzed and statistics on occurrence and distribution of bulk properties of cirri are provided. The relationship between environmental and cloud physical parameters and the shape of the backscatter profile (BSP) is investigated. It is found that CALIOP BSP is mainly affected by cloud geometrical thickness while only minor impacts can be attributed to other quantities such as optical depth or temperature. To fit mean BSPs as functions of geometrical thickness and position within the cloud layer, polynomial functions are provided. It is demonstrated that, under realistic hypotheses, the mean BSP is linearly proportional to the IWC profile. The IWC parameterization is included into the RT-RET retrieval algorithm, that is exploited to analyze infrared radiance measurements in presence of cirrus clouds during the ECOWAR field campaign. Retrieved microphysical and optical properties of the observed cloud are used as input parameters in a forward RT simulation run over the 100-1100 cm-1 spectral interval and compared with interferometric data to test the ability of the current single scattering properties database of ice crystal to reproduce realistic optical features. Finally a global scale investigation of cirrus clouds is performed by developing a collocation algorithm that exploits satellite data from multiple sensors (AIRS, CALIOP, MODIS). The resulting data set is utilized to test a new infrared hyperspectral retrieval algorithm. Retrieval products are compared to data and in particular the cloud top height (CTH) product is considered for this purpose. A better agreement of the retrieval with the CALIOP CTH than MODIS is found, even if some cases of underestimation and overestimation are observed.
Resumo:
Basic concepts and definitions relative to Lagrangian Particle Dispersion Models (LPDMs)for the description of turbulent dispersion are introduced. The study focusses on LPDMs that use as input, for the large scale motion, fields produced by Eulerian models, with the small scale motions described by Lagrangian Stochastic Models (LSMs). The data of two different dynamical model have been used: a Large Eddy Simulation (LES) and a General Circulation Model (GCM). After reviewing the small scale closure adopted by the Eulerian model, the development and implementation of appropriate LSMs is outlined. The basic requirement of every LPDM used in this work is its fullfillment of the Well Mixed Condition (WMC). For the dispersion description in the GCM domain, a stochastic model of Markov order 0, consistent with the eddy-viscosity closure of the dynamical model, is implemented. A LSM of Markov order 1, more suitable for shorter timescales, has been implemented for the description of the unresolved motion of the LES fields. Different assumptions on the small scale correlation time are made. Tests of the LSM on GCM fields suggest that the use of an interpolation algorithm able to maintain an analytical consistency between the diffusion coefficient and its derivative is mandatory if the model has to satisfy the WMC. Also a dynamical time step selection scheme based on the diffusion coefficient shape is introduced, and the criteria for the integration step selection are discussed. Absolute and relative dispersion experiments are made with various unresolved motion settings for the LSM on LES data, and the results are compared with laboratory data. The study shows that the unresolved turbulence parameterization has a negligible influence on the absolute dispersion, while it affects the contribution of the relative dispersion and meandering to absolute dispersion, as well as the Lagrangian correlation.
Resumo:
Particulate matter is one of the main atmospheric pollutants, with a great chemical-environmental relevance. Improving knowledge of the sources of particulate matter and of their apportionment is needed to handle and fulfill the legislation regarding this pollutant, to support further development of air policy as well as air pollution management. Various instruments have been used to understand the sources of particulate matter and atmospheric radiotracers at the site of Mt. Cimone (44.18° N, 10.7° E, 2165 m asl), hosting a global WMO-GAW station. Thanks to its characteristics, this location is suitable investigate the regional and long-range transport of polluted air masses on the background Southern-Europe free-troposphere. In particular, PM10 data sampled at the station in the period 1998-2011 were analyzed in the framework of the main meteorological and territorial features. A receptor model based on back trajectories was applied to study the source regions of particulate matter. Simultaneous measurements of atmospheric radionuclides Pb-210 and Be-7 acquired together with PM10 have also been analysed to acquire a better understanding of vertical and horizontal transports able to affect atmospheric composition. Seasonal variations of atmospheric radiotracers have been studied both analysing the long-term time series acquired at the measurement site as well as by means of a state-of-the-art global 3-D chemistry and transport model. Advection patterns characterizing the circulation at the site have been identified by means of clusters of back-trajectories. Finally, the results of a source apportionment study of particulate matter carried on in a midsize town of the Po Valley (actually recognised as one of the most polluted European regions) are reported. An approach exploiting different techniques, and in particular different kinds of models, successfully achieved a characterization of the processes/sources of particulate matter at the two sites, and of atmospheric radiotracers at the site of Mt. Cimone.
Resumo:
Snow plays a crucial role in the Earth's hydrological cycle and energy budget, making its monitoring necessary. In this context, ground-based radars and in situ instruments are essential thanks to their spatial coverage, resolution, and temporal sampling. Deep understanding and reliable measurements of snow properties are crucial over Antarctica to assess potential future changes of the surface mass balance (SMB) and define the contribution of the Antarctic ice sheet on sea-level rise. However, despite its key role, Antarctic precipitation is poorly investigated due to the continent's inaccessibility and extreme environment. In this framework, this Thesis aims to contribute to filling this gap by in-depth characterization of Antarctic precipitation at the Mario Zucchelli station from different points of view: microphysical features, quantitative precipitation estimation (QPE), vertical structure of precipitation, and scavenging properties. For this purpose, a K-band vertically pointing radar collocated with a laser disdrometer and an optical particle counter (OPC) were used. The radar probed the lowest atmospheric layers with high vertical resolution, allowing the first trusted measurement at only 105 m height. Disdrometer and OPC provided information on the particle size distribution and aerosol concentrations. An innovative snow classification methodology was designed by comparing the radar reflectivity (Ze) and disdrometer-derived reflectivity by means of DDA simulations. Results of classification were exploited in QPE through appropriate Ze-snow rate relationships. The accuracy of the resulting QPE was benchmarked against a collocated weighing gauge. Vertical radar profiles were also investigated to highlight hydrometeors' sublimation and growth processes. Finally, OPC and disdrometer data allowed providing the first-ever estimates of scavenging properties of Antarctic snowfall. Results presented in this Thesis give rise to advances in knowledge of the characteristics of snowfall in Antarctica, contributing to a better assessment of the SMB of the Antarctic ice sheet, the major player in the global sea-level rise.
Resumo:
Air pollution is one of the greatest health risks in the world. At the same time, the strong correlation with climate change, as well as with Urban Heat Island and Heat Waves, make more intense the effects of all these phenomena. A good air quality and high levels of thermal comfort are the big goals to be reached in urban areas in coming years. Air quality forecast help decision makers to improve air quality and public health strategies, mitigating the occurrence of acute air pollution episodes. Air quality forecasting approaches combine an ensemble of models to provide forecasts from global to regional air pollution and downscaling for selected countries and regions. The development of models dedicated to urban air quality issues requires a good set of data regarding the urban morphology and building material characteristics. Only few examples of air quality forecast system at urban scale exist in the literature and often they are limited to selected cities. This thesis develops by setting up a methodology for the development of a forecasting tool. The forecasting tool can be adapted to all cities and uses a new parametrization for vegetated areas. The parametrization method, based on aerodynamic parameters, produce the urban spatially varying roughness. At the core of the forecasting tool there is a dispersion model (urban scale) used in forecasting mode, and the meteorological and background concentration forecasts provided by two regional numerical weather forecasting models. The tool produces the 1-day spatial forecast of NO2, PM10, O3 concentration, the air temperature, the air humidity and BLQ-Air index values. The tool is automatized to run every day, the maps produced are displayed on the e-Globus platform, updated every day. The results obtained indicate that the forecasting output were in good agreement with the observed measurements.
Resumo:
Understanding the natural and forced variability of the atmospheric general circulation and its drivers is one of the grand challenges in climate science. It is of paramount importance to understand to what extent the systematic error of climate models affects the processes driving such variability. This is done by performing a set of simulations (ROCK experiments) with an intermediate complexity atmospheric model (SPEEDY), in which the Rocky Mountains orography is increased or decreased to influence the structure of the North Pacific jet stream. For each of these modified-orography experiments, the climatic response to idealized sea surface temperature anomalies of varying intensity in the El Niño Southern Oscillation (ENSO) region is studied. ROCK experiments are characterized by variations in the Pacific jet stream intensity whose extension encompasses the spread of the systematic error found in Coupled Model Intercomparison Project (CMIP6) models. When forced with ENSO-like idealised anomalies, they exhibit a non-negligible sensitivity in the response pattern over the Pacific North American region, indicating that the model mean state can affect the model response to ENSO. It is found that the classical Rossby wave train response to ENSO is more meridionally oriented when the Pacific jet stream is weaker and more zonally oriented with a stronger jet. Rossby wave linear theory suggests that a stronger jet implies a stronger waveguide, which traps Rossby waves at a lower latitude, favouring a zonal propagation of Rossby waves. The shape of the dynamical response to ENSO affects the ENSO impacts on surface temperature and precipitation over Central and North America. A comparison of the SPEEDY results with CMIP6 models suggests a wider applicability of the results to more resources-demanding climate general circulation models (GCMs), opening up to future works focusing on the relationship between Pacific jet misrepresentation and response to external forcing in fully-fledged GCMs.
Resumo:
The study of the atmospheric chemical composition is crucial to understand the climate changes that we are experiencing in the last decades and to monitor the air quality over industrialized areas. The Multi-AXis Differential Optical Absorption Spectroscopy (MAX-DOAS) ground-based instruments are particularly suitable to derive the concentration of some trace gases that absorb the Visible (VIS) and Ultra-Violet (UV) solar radiation. The zenith-sky spectra acquired by the Gas Analyzer Spectrometer Correlating Optical Differences / New Generation 4 (GASCOD/NG4) instrument are exploited to retrieve the NO2 and O3 total Vertical Column Densities (VCDs) over Lecce. The results show that the NO2 total VCDs are significantly affected by the tropospheric content, consequence of the anthropogenic activity. Indeed, they present systematically lower values during Sunday, when less traffic is generally present around the measurement site, and during windy days, especially when the wind direction measured at 2 m height is not from the city of Lecce. Another MAX-DOAS instrument (SkySpec-2D) is exploited to create the first Italian MAX-DOAS site compliant to the Fiducial Reference Measurements for DOAS (FRM4DOAS) standards, in San Pietro Capofiume (SPC), located in the middle of the Po Valley. After the assessment of the SkySpec-2D’s performances through two measurement campaigns taken place in Bologna and in Rome, SkySpec-2D is installed in SPC on the 1st October 2021. Its MAX-DOAS spectra are used to retrieve the NO2 and O3 total VCDs, and aerosol extinction and NO2 tropospheric vertical profiles over the Po Valley exploiting the Bremen Optimal estimation REtrieval for Aerosol and trace gaseS (BOREAS) algorithm. Promising results are found, with high correlations against both in-situ and satellite data. In the future, these data will play an important role for air quality studies over the Po Valley and for satellite validation purposes.
Resumo:
This thesis analyzes the impact of heat extremes in urban and rural environments, considering processes related to severely high temperatures and unusual dryness. The first part deals with the influence of large-scale heatwave events on the local-scale urban heat island (UHI) effect. The temperatures recorded over a 20-year summer period by meteorological stations in 37 European cities are examined to evaluate the variations of UHI during heatwaves with respect to non-heatwave days. A statistical analysis reveals a negligible impact of large-scale extreme temperatures on the local daytime urban climate, while a notable exacerbation of UHI effect at night. A comparison with the UrbClim model outputs confirms the UHI strengthening during heatwave episodes, with an intensity independent of the climate zone. The investigation of the relationship between large-scale temperature anomalies and UHI highlights a smooth and continuous dependence, but with a strong variability. The lack of a threshold behavior in this relationship suggests that large-scale temperature variability can affect the local-scale UHI even in different conditions than during extreme events. The second part examines the transition from meteorological to agricultural drought, being the first stage of the drought propagation process. A multi-year reanalysis dataset involving numerous drought events over the Iberian Peninsula is considered. The behavior of different non-parametric standardized drought indices in drought detection is evaluated. A statistical approach based on run theory is employed, analyzing the main characteristics of drought propagation. The propagation from meteorological to agricultural drought events is found to develop in about 1-2 months. The duration of agricultural drought appears shorter than that of meteorological drought, but the onset is delayed. The propagation probability increases with the severity of the originating meteorological drought. A new combined agricultural drought index is developed to be a useful tool for balancing the characteristics of other adopted indices.
Resumo:
The accurate representation of the Earth Radiation Budget by General Circulation Models (GCMs) is a fundamental requirement to provide reliable historical and future climate simulations. In this study, we found reasonable agreement between the integrated energy fluxes at the top of the atmosphere simulated by 34 state-of-the-art climate models and the observations provided by the Cloud and Earth Radiant Energy System (CERES) mission on a global scale, but large regional biases have been detected throughout the globe. Furthermore, we highlighted that a good agreement between simulated and observed integrated Outgoing Longwave Radiation (OLR) fluxes may be obtained from the cancellation of opposite-in-sign systematic errors, localized in different spectral ranges. To avoid this and to understand the causes of these biases, we compared the observed Earth emission spectra, measured by the Infrared Atmospheric Sounding Interferometer (IASI) in the period 2008-2016, with the synthetic radiances computed on the basis of the atmospheric fields provided by the EC-Earth GCM. To this purpose, the fast σ-IASI radiative transfer model was used, after its validation and implementation in EC-Earth. From the comparison between observed and simulated spectral radiances, a positive temperature bias in the stratosphere and a negative temperature bias in the middle troposphere, as well as a dry bias of the water vapor concentration in the upper troposphere, have been identified in the EC-Earth climate model. The analysis has been performed in clear-sky conditions, but the feasibility of its extension in the presence of clouds, whose impact on the radiation represents the greatest source of uncertainty in climate models, has also been proven. Finally, the analysis of simulated and observed OLR trends indicated good agreement and provided detailed information on the spectral fingerprints of the evolution of the main climate variables.
Resumo:
Extreme weather events related to deep convection are high-impact critical phenomena whose reliable numerical simulation is still challenging. High-resolution (convection-permitting) modeling setups allow to switch off physical parameterizations accountable for substantial errors in convection representation. A new convection-permitting reanalysis over Italy (SPHERA) has been produced at ARPAE to enhance the representation and understanding of extreme weather situations. SPHERA is obtained through a dynamical downscaling of the global reanalysis ERA5 using the non-hydrostatic model COSMO at 2.2 km grid spacing over 1995-2020. This thesis aims to verify the expectations placed on SPHERA by analyzing two weather phenomena that are particularly challenging to simulate: heavy rainfall and hail. A quantitative statistical analysis over Italy during 2003-2017 for daily and hourly precipitation is presented to compare the performance of SPHERA with its driver ERA5 considering the national network of rain gauges as reference. Furthermore, two extreme precipitation events are deeply investigated. SPHERA shows a quantitative added skill over ERA5 for moderate to severe and rapid accumulations in terms of adherence to the observations, higher detailing of the spatial fields, and more precise temporal matching. These results prompted the use of SPHERA for the investigation of hailstorms, for which the combination of multiple information is crucial to reduce the substantial uncertainties permeating their understanding. A proxy for hail is developed by combining hail-favoring environmental numerical predictors with observations of ESWD hail reports and satellite overshooting top detections. The procedure is applied to the extended summer season (April-October) of 2016-2018 over the whole SPHERA spatial domain. The results indicate maximum hail likelihood over pre-Alpine regions and the northern Adriatic sea around 15 UTC in June-July, in agreement with recent European hail climatologies. The method demonstrates enhanced performance in case of severe hail occurrences and the ability to separate between ambient signatures depending on hail severity.