20 resultados para Chemical processes.


Relevância:

30.00% 30.00%

Publicador:

Resumo:

This PhD thesis is aimed at studying the suitability of proteases realised by Yarrowia lipolytica to hydrolyse proteins of different origins available as industrial food by-products. Several strains of Y. lipolytica have been screened for the production of extracellular proteases by zymography. On the basis of the results some strains released only a protease having a MW of 37 kDa, which corresponds to the already reported acidic protease, while other produced prevalently or only a protease with a MW higher than 200 kDa. The proteases have been screened for their "cold attitude" on gelatin, gluten and skim milk. This property can be relevant from a biotechnological point of view in order to save energy consumption during industrial processes. Most of the strains used were endowed with proteolytic activity at 6 °C on all the three proteins. The proteolytic breakdown profiles of the proteins, detected at 27 °C, were different related to the specific strains of Y. lipolytica. The time course of the hydrolysis, tested on gelatin, affected the final bioactivities of the peptide mixtures produced. In particular, an increase in both the antioxidant and antimicrobial activities was detected when the protease of the strain Y. lipolytica 1IIYL4A was used. The final part of this work was focused on the improvement of the peptides bioactivities through a novel process based on the production of glycopeptides. Firstly, the main reaction parameters were optimized in a model system, secondly a more complex system, based on gluten hydrolysates, was taken into consideration to produce glycopeptides. The presence of the sugar moiety reduced the hydrophobicity of the glycopeptides, thus affecting the final antimicrobial activity which was significantly improved. The use of this procedure could be highly effective to modify peptides and can be employed to create innovative functional peptides using a mild temperature process.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The demand of energy, fuels and chemicals is increasing due to the strong growth of some countries in the developing world and the development of the world economy. Unfortunately, the general picture derived sparked an exponential increase in crude oil prices with a consequent increase of the chemical, by-products and energy, depleting the global market. Nowadays biomass are the most promising alternative to fossil fuels for the production of chemicals and fuels. In this work, the development of three different catalytic processes for the valorization of biomass-derived has been investigated. 5-hydroxymethylfurfural oxidation was studied under mild reaction condition using gold and gold/copper based catalysts synthetized from pre-formed nanoparticles and supported onto TiO2 and CeO2. The analysis conducted on catalysts showed the formation of alloys gold/copper and a strong synergistic effect between the two metals. For this reason the bimetallic catalysts supported on titania showed a higher catalytic activity respect to the monometallic catalysts. The process for the production of 2,5-bishydroxymethyl furan (BHMF) was also optimized by means the 5-hydroxymethylfurfural hydrogenation using the Shvo complex. Complete conversion of HMF was achieved working at 90 °C and 10 bar of hydrogen. The complex was found to be re-usable for at least three catalytic cycles without suffering any type of deactivation. Finally, the hydrogenation of furfural and HMF was carried out, developing the process of hydrogen transfer by using MgO as a catalyst and methanol as a hydrogen donor. Quantitative yields to alcohols have been achieved in a few hours working in mild condition: 160 °C and at autogenous pressure. The only by-products formed were light products such as CO, CO2 and CH4 (products derived from methanol transformation), easily separable from the reaction solution depressurizing the reactor.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In recent decades, the use of organic fertilizers has gained increasing interest mainly for two reasons: their ability to improve soil fertility and the need to find a sustainable alternative to mineral and synthetic fertilizers. In this context, sewage sludge is a useful organic matrix that can be successfully used in agriculture, due to its chemical composition rich in organic matter, nitrogen, phosphorus and other micronutrients necessary for plant growth. This work investigated three indispensable aspects (i.e., physico-chemical properties, agronomic efficiency and environmental safety) of sewage sludge application as organic fertilizer, emphasizing the role of tannery sludge. In a comparison study with municipal sewage sludge, results showed that the targeted analyses applied (total carbon and nitrogen content, isotope ratio of carbon and nitrogen, infrared spectroscopy and thermal analysis) were able to discriminate tannery sludge from municipal ones, highlighting differences in composition due to the origin of the wastewater and the treatment processes used in the plants. Regarding agronomic efficiency, N bioavailability was tested in a selection of organic fertilizers, including tannery sludge and tannery sludge-based fertilizers. Specifically, the hot-water extractable N has proven to be a good chemical indicator, providing a rapid and reliable indication of N bioavailability in soil. Finally, the behavior of oxybenzone (an emerging organic contaminant detected in sewage sludge) in soils with different physico-chemical properties was studied. Through adsorption and desorption experiments, it was found that the mobility of oxybenzone is reduced in soils rich in organic matter. Furthermore, through spectroscopic methods (e.g., infrared spectroscopy and surface-enhanced Raman spectroscopy) the mechanisms of oxybenzone-humic acids interaction were studied, finding that H-bonds and π-π stacking were predominantly present.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The urgent need for alternative solutions mitigating the impacts of human activities on the environment has strongly opened new challenges and opportunities in view of the energy transition. Indeed, the automotive industry is going through a revolutionary moment in its quest to reduce its carbon footprint, with biofuels being one of the viable alternatives. The use of different classes of biofuels as fuel additives/standalone components has attracted the attention of many researchers. Despite their beneficial effects, biofuel’s combustion can also result in the production of undesirable pollutants, requiring complete characterization of the phenomena occurring during their production and consumption. Industrial scale-up of biomass conversion is challenging owing to the complexity of its chemistry and transport phenomena involved in the process. In this view, the role of solid-phase and gas-phase chemistry is paramount. Thus, this study is devoted to detailed analysis of physical-chemical phenomena characterizing biomass pyrolysis and biofuel oxidation. The pyrolysis mechanism has been represented by 20 reactions whereas, the gas-phase kinetic models; manually upgraded model (KiBo_MU) and automated model (KiBo_AG), comprises 141 species and 453 reactions, and 631 species and 28329 reactions, respectively. The accuracy of the kinetic models was tested against experimental data and the models captured experimental trends very well. While the development and validation of detailed kinetic mechanisms is the main deliverable of this project, the realized procedure integrating schematic classifications with methodologies for the identification of common decomposition pathways and intermediates represents an additional source of novelty. Besides, the fundamentally oriented nature of the adopted method allows the identification of most relevant reactions and species under the operating conditions different industrial applications, paving the way for reduced kinetic mechanisms. Ultimately, the resulting detailed mechanisms can be used to integrate with more complex fluid dynamics model to accurately reproduce the behavior of real systems and reactors.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Emissions of CO2 are constantly growing since the beginning of industrial era. Interruption of the production of major emitters sectors (energy and agriculture) is not a viable way and reducing all the emission through carbon capture and storage (CCS) is not economically viable and little publicly accepted, therefore, it becomes fundamentals to take actions like retrofitting already developed infrastructure employing cleanest resources, modify the actual processes limiting the emissions, and reduce the emissions already present through direct air capture. The present thesis will deeply discuss the aspects mentioned in regard to syngas and hydrogen production since they have a central role in the market of energy and chemicals. Among the strategies discussed, greater emphasis is given to the application of looping technologies and to direct air capture processes, as they have been the main point of this work. Particularly, chemical looping methane reforming to syngas was studied with Aspen Plus thermodynamic simulations, thermogravimetric analysis characterization (TGA) and testing in a fixed bed reactor. The process was studied cyclically exploiting the redox properties of a Ce-based oxide oxygen carrier synthetized with a simple forming procedure. The two steps of the looping cycles were studied isothermally at 900 °C and 950° C with a mixture of 10 %CH4 in N2 and of 3% O2 in N2, for carrier reduction and oxidation, respectively. During the stay abroad, in collaboration with the EHT of Zurich, a CO2 capture process in presence of amine solid sorbents was investigated, studying the difference in the performance achievable with the use of contactors of different geometry. The process was studied at two concentrations (382 ppm CO2 in N2 and 5.62% CO2 in N2) and at different flow rates, to understand the dynamics of the adsorption process and to define the mass transfer limiting step.